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Just-in-Time Adaptive Classifiers—Part II:
Designing the Classifier

Cesare Alippi, Fellow, IEEE, and Manuel Roveri

Abstract—Aging effects, environmental changes, thermal drifts,
and soft and hard faults affect physical systems by changing their
nature and behavior over time. To cope with a process evolution
adaptive solutions must be envisaged to track its dynamics; in this
direction, adaptive classifiers are generally designed by assuming
the stationary hypothesis for the process generating the data with
very few results addressing nonstationary environments. This
paper proposes a methodology based on -nearest neighbor (NN)
classifiers for designing adaptive classification systems able to
react to changing conditions just-in-time (JIT), i.e., exactly when
it is needed. -NN classifiers have been selected for their compu-
tational-free training phase, the possibility to easily estimate the
model complexity and keep under control the computational
complexity of the classifier through suitable data reduction mecha-
nisms. A JIT classifier requires a temporal detection of a (possible)
process deviation (aspect tackled in a companion paper) followed
by an adaptive management of the knowledge base (KB) of the
classifier to cope with the process change. The novelty of the pro-
posed approach resides in the general framework supporting the
real-time update of the KB of the classification system in response
to novel information coming from the process both in stationary
conditions (accuracy improvement) and in nonstationary ones
(process tracking) and in providing a suitable estimate of . It is
shown that the classification system grants consistency once the
change targets the process generating the data in a new stationary
state, as it is the case in many real applications.

Index Terms—Intelligent systems, learning systems, neural net-
works, pattern classification.

I. INTRODUCTION

I N world applications, processes are characterized by an
evolutionary nature and may change their behavior over

lifetime. In general, this is due to ageing effects, thermal
drifts, nonstationary phenomena, soft and hard faults that may
affect industrial, environmental and natural processes and, as
a consequence, data coming from them. At the same time,
when no change occurs, the process might provide additional
information that could be exploited to improve the application
accuracy. The former case is common in all applications en-
visaging measurement systems and sensors (the dynamic of
the change generally depending on the sensor nature and its
interaction with the environment). For instance, a change in
stationarity is generally particularly evident in data coming
from X-ray detectors, electronic noses, monitoring systems
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for aquatic, mountain and desertic environments, and, more in
general, in all those measurement systems operating in harsh
environments, while it is somehow milder (i.e., ruled by slow
dynamics) when the deployment refers to noncritical environ-
ments. The latter aspect, i.e., integration of fresh information
to improve the accuracy of the classification system, requires
the presence of a supervisor. In quality analysis applications,
a supervisor is present that randomly selects artifacts or goods
from industrial/manufacturing processes and assesses their
quality through a direct inspection, identifies false positive or
negative samples in electronic olfactory systems, or corrects
items in a character/word recognition ones; such supervised
information, provided it is suitably integrated in the classifier,
leads to accuracy improvements.

In solutions developed for all above applications, the process
evolution requires adaptive mechanisms to optimally exploit
information coming from the process. Solutions, whatever they
have been designed for, must hence be reactive to provide,
through adaptation, the best possible performance.

Traditional adaptive classifiers [1]–[6] assume the stationarity
hypothesis for the process generating the data; as such, they
provide good results in stationary conditions and are scarcely
effective in nonstationary environments.

There exists a limited literature addressing adaptive clas-
sifiers in nonstationary conditions, with research focusing on
adaptive preprocessing techniques, adaptive neural networks,
and adaptive classifiers for specific applications. Transforma-
tions invariant to environmental changes have been suggested
in [7]–[9]. Li et al. [10] propose a classification design with
adaptive filtering mechanisms based on a priori information
of the process. A time adaptive self-organizing map (SOM),
automatically adjusting the network parameters to work both
in stationary and nonstationary environments, is presented in
[11]; Carpenter et al. [12] propose a fuzzy ARTMAP as a
nonparametric probability estimator for nonstationary pattern
recognition problems and [13] a probabilistic neural network
for classifying patterns characterized by time-varying distribu-
tions. In [14], an online tracking of analog neurons subject to
slowly drifting weights is proposed, while Kuh [15] provides
a comparison of tracking algorithms for single-layer threshold
networks in presence of random drifts.

Few papers consider adaptive classifiers in applications, e.g.,
control in manufacturing systems [16], neural networks for
breast cancer detection [17], adaptive image analysis for aerial
surveillance [18], condition monitoring and fault prediction
[19], visual surveillance of noncooperative and camouflaged
targets [20], and induction machine stator fault diagnostics [21].

The main limit of solutions proposed in the related literature
is the need of continuously updating the knowledge base (KB) of
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the classifier (i.e., training set) or its network weights even when
unnecessary (no stationarity tests are carried out). Moreover,
most of these approaches neither adequately describe the effects
of the introduction/removal of fresh information into an existing
KB nor address the relationships between what proposed and the
asymptotic behavior defined by the theory in the stationary case.

Here, we suggest a design methodology for adaptive classi-
fiers which, by exploiting supervised information coming from
the field during operational life, modifies, whenever appro-
priate, the KB characterizing the classifier to maintain/improve
classification accuracy. In particular, the classifier exploits fresh
available information in stationary conditions and reacts to
the changing environment in nonstationary ones to track the
system change. The novelty of the approach resides in the pos-
sibility to update just-in-time (JIT), i.e., exactly when needed
or convenient, the classifier and, at the same time, provide a
fully automatic adaptive framework. Designing a JIT adaptive
classifier involves the following two steps:

1) definition of methods able to identify the most convenient
instant of time for integrating the incoming fresh knowl-
edge (data) in the classifier (issue addressed in [22]);

2) integration of such information in the KB of the classifier
to improve accuracy/track the process change (issue ad-
dressed in this paper).

The joint use of nonstationary detection tests and adaptive
knowledge mechanisms allows us for designing JIT adap-
tive classifiers that improve their accuracy (whenever new
information is available) in stationary conditions (so as to
follow the asymptotic learning theory) and react to changes in
nonstationary conditions by tracking the evolution of the data
generating process. It is shown that the JIT adaptive classifier,
based on -nearest neighbor (NN) classification systems for
their training free operational modality and easiness in manip-
ulating model and computational complexity, is consistent in
stationary conditions or when the process gains a stationary
state. In other scenarios, the JIT adaptive classifier keeps
tracking the process evolution to reduce the classification error.

The structure of this paper is as follows. Section II introduces
the JIT classifier addressing stationary conditions, its relation-
ship with the asymptotic theory, and how to estimate the needed
parameters. The general framework design for JIT adaptive clas-
sifiers dealing with both stationary and nonstationary situations
is presented in Section III. Experimental results are provided in
Section IV.

II. JIT ADAPTIVE CLASSIFIERS IN STATIONARY CONDITIONS

The operational framework onto which JIT classifiers for sta-
tionary conditions operate is that of asymptotical learning [21].
There, consistency guarantees that the performance of consis-
tent classifiers asymptotically converges to the optimal Bayes’
one [23] when the training set (or KB) composed of inde-
pendent and identically distributed (i.i.d.) pairs increases. This
means that, in consistent learning methods, it is always worth
integrating fresh samples in the classifier to improve accuracy
(the compromise between cost of integration and accuracy gain
can be studied with sequential analysis methods [24]).

Among different classification families, -NNs [25] are par-
ticularly appealing consistent classifiers to be used as a core

for JIT classification systems due to the absence of a proper
training phase and an easy management of the classifier com-
plexity. In fact, given and estimated , the -NN-based JIT
can be made adaptive and automatic through a suitable man-
agement of its KB.

The asymptotic consistency of -NN classifiers is granted in
the stationary case provided that i.i.d. training samples are ex-
tracted from the process generating the data and that grows
less than linearly with [26], [27]. The optimal value of as
increases, namely, the value of to be used in the JIT classifier
to minimize the generalization error given training samples,
must be estimated (bad estimates would reflect on classification
performance) and represents a key point in constructing an au-
tomatic adaptive -NN-based classifier.

In this direction, Fukunaga [28] has shown that the optimal
given samples for the -NN density estimate is

(1)
where is the gamma function, is the probability density
function of the input variable , is the size of the input space,
and is a function resulting from a second-order Taylor
expansion of . Moreover, when increases,
asymptotically tends to the Bayes classifier [23], [29].

Unfortunately, determination of the optimal requires a
priori information such as the , which is hardly available
in real applications.

A different approach, which does not require unrealistic hy-
potheses, suggests to be estimated with leave-one-out (LOO)
[30]. Unfortunately, a LOO approach is computationally expen-
sive, in particular, when gets large, and cannot be considered
every time a new sample (or a limited set of samples of car-
dinality ) is available. A viable solution to this problem is
to integrate LOO and Fukunaga’s approaches to provide a low
computationally intensive estimate of as increases. In par-
ticular, by taking the ratio , we obtain
a recursive estimate for

(2)

When we are not in possess of , unknown can
be evaluated with . As a consequence, the to be con-
sidered having collected additional training samples from
is

(3)

Once estimated , the new can be directly
computed with (3), which proves to be effective in the neighbor-
hood of . In particular, from experiments, (3) provides a good
estimate for all values
with accounting for about 25% of . Once we have
received and integrated in the classifier (either one by one or
through small sets of samples) more than samples, a
new should be evaluated over all received
data.
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More in detail, the classifier given in Algorithm 1 operates as
follows.

Algorithm 1: Adaptive Classifier

1. Estimate on the initial knowledge base and set
;

2. ;
3. ; ; ;
4. while (1) {
5. if (new information IKB is available) {
6. ;
7. ;
8. if {
9. Estimate on KB and set ;
10. ; ;
11. }

12. ;
13. }
14. if ( is available) {
15. classification -NN ;

}
16. }

The initial knowledge base characterizing the initial
-NN classifier is used to estimate the initial value by

means of a LOO estimate (step 1). When new knowledge IKB
is provided to the classifier (step 5), it is inserted in the KB of
the classifier (step 6) and the new value of is computed
(step 12). When ratio between the number of new sam-
ples and the number of samples in the KB is above 0.25 (step 8),
a new value of is estimated with LOO applied to
samples (step 9). Obviously, the designer can opt for a different
strategy and set a threshold for activating the KB updating pro-
cedure based on a priori information/computational constraints.
Finally, the new incoming input sample is classified with the

-NN rule based on KB and .
An increment in the cardinality of the training base is al-

ways profitable from the accuracy point of view but it also
induces a computational complexity which grows as
(and could become critical in embedded solutions charac-
terized by contained computational and memory resources).
As such, even if the whole KB must be kept for information
management, in stationary conditions, it is generally profitable
to reduce the cardinality of the KB of the -NN from KB to

to speedup the computation and reduce memory
consumption during the operational life of the classifier (i.e.,
step 15 of algorithm 1 should be modified as “classification

-NN .” At the same time, data
reduction techniques support outliers removal.

The aim of condensing and editing techniques is to maintain
the smallest set of training instances yet preserving the clas-
sification accuracy on the training set. This can be achieved
by removing both possible outliers (noisy samples that cause
wrong classification) and superfluous samples (which are re-
dundant, in the sense that they are dominated by others). The

condensed nearest neighbor (CNN) rule [33] and the reduced
nearest neighbor (RNN) [34] one move in this direction. How-
ever, such methods are advisable only if the Bayes error is small,
otherwise the effectiveness in reduction might be poor.

Differently, Wilson’s editing rule [35] removes an instance
from the training set whenever it does not agree with the ma-
jority of its neighbors (typically ). Noisy instances
(outliers), as well as borderline samples, are removed from the
training set, hence providing a smoother decision boundary.

There it also exists a particularly elegant geometrical solu-
tion which aims at reducing the KB in -NN classifiers and,
at the same time, preserving the decision boundary [36]. The
method requires generation of a Voronoi diagram in a highly
dimensional space, operation proven to be computationally ex-
pensive. Hence, for practical applications, we suggest to con-
sider approximate solutions such as the Gabriel graph rule [36]
and the relative neighbor graph rule [36] that solve the problem
by trading off computational complexity and performance.

III. JIT ADAPTIVE CLASSIFIERS IN NONSTATIONARY

ENVIRONMENTS

When the process under investigation changes its statistical
behavior during operational life, which means that at a certain
instant of time the probability density function (pdf) underlying
the process changes, the training set contains obsolete informa-
tion which negatively impacts classification performance. The
main consequence of nonstationarity is hence a loss in accu-
racy, which can be contained by considering adaptive classifica-
tion systems designed to track the process (exploitation of fresh
knowledge and removal of obsolete one).

The joint use of change detection tests and dynamic knowl-
edge management leads to the JIT adaptive classifier given in
Algorithm 2 operating both in stationary and nonstationary con-
ditions. The classifier, at this high abstraction level, is optimal
and works as follows.

Algorithm 2: General JIT Adaptive Classifier

1. Configure the classifier on the initial knowledge base ;
2. Configure the nonstationarity detection test on ;
3. ;
4. ;
5. while (1) {
6. if (new knowledge is available) {
7. ;
8. Reconfigure the classifier on ;
9. ; }
10. if (nonstationarity detection test Stationary)
11. Use the classifier on the input sample as per
algorithm 1;
12. else {
13. Identify the obsolete knowledge in the
knowledge base ;
14. ;
15. Reconfigure the classifier on ;
16. Reconfigure the nonstationarity detection test on

;
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17. Use the classifier on the input sample relying on
;

18. ;
19. }
20. }

The initial knowledge base is used to configure both
the initial classifier (step 1) and the nonstationary change de-
tection test (step 2). When new information (IKB) is provided
to the classifier (step 6), the algorithm suitably integrates it in
the KB (step 7) and reconfigures the classifier accordingly (step
8). If the process under monitoring remains stationary and new
knowledge is not available during operational life, the method-
ology works as per stationary environments (step 11) following
algorithm 1. Conversely, when the change detection test detects
a nonstationary behavior for the process (step 12), obsolete in-
formation needs to be removed from the KB (step 14), a re-
configuration of the classifier (step 15) and the nonstationary
change detection test are invoked (step 16). The new process
becomes the reference one for detecting subsequent evolutions.
In this case, the classification of the input sample is performed
on the updated KB after the reconfiguration of the classifier
(step 17).

The general methodology for developing JIT adaptive clas-
sifiers of Algorithm 2 provides a comprehensive solution to
the classification problem in stationary/nonstationary environ-
ments: new information is inserted in the classifier in station-
arity conditions to improve accuracy and tracking the process
evolution is performed in the nonstationary case. However, to ef-
fectively design a JIT adaptive classifier, designers have to take
several implementation choices regarding the classifier (struc-
ture, family, and model), the change detection test to be used,
the data onto which apply the change detection test, and the up-
dating mechanism for the KB.

Again, we suggest to use -NN classifiers for their immediate
training phase and easy knowledge management. As shown in
Appendix I, the choice is supported from the theory: a JIT clas-
sifiers based on the -NN rule achieves the Bayes classifier in
the stationary case and whenever the nonstationarity moves the
process in a new stationary state (consistency in probability).
In other scenarios (e.g., continuous drift), general consistency
cannot be guaranteed depending on the dynamic of the change;
yet, the JIT adaptive classifier tracks the process evolution to re-
duce the classification error.

As far as the change detection issue is concern, there ex-
ists a large literature which generally requires a priori informa-
tion about the process generating the data to properly configure
the test parameters. We suggest to use the adaptive self-config-
uring statistical CI-CUSUM test suggested by the authors in the
companion paper [22] to detect nonstationarity trends, which
combines effective change detection abilities in a priori infor-
mation-free context with a contained computational complexity
burden. However, the designer can select his/her favorite change
detection method.

A last issue to be faced refers to obsolete information removal
and insertion of new supervised knowledge. Removal of obso-
lete data from the KB, which is performed in step 14, can be ad-

dressed with solutions based on oblivion coefficients [37], out-
lier detections [35], [38], and sample regularization based on the
information content [35]; here, we assume that the last acquired
samples are the most meaningful ones and, as such, represent
the current state of the process. The direct consequence is that
older samples are obsolete and can be removed from the KB.
The assumption is acceptable in almost all real situations where
nonstationarity is associated with process aging and faults.

The minimum number of samples to be kept in the KB
after a removal operation should allow both for granting accu-
racy and satisfying the operational requirements of the change
detection test (for instance, the CI-CUSUM change detection
test requires a minimum of samples). Aspects related
to the number of samples to be considered and their relationship
with the dynamic of process under monitoring are provided in
Section IV-B.

The JIT adaptive classifier of Algorithm 2 tailored to -NN
and the CI-CUSUM test is finally presented in Algorithm 3.

Algorithm 3: JIT Adaptive Classifiers

1. Estimate on and set , ;
2. Configure the classifier on ;
3. Configure the nonstationarity detection test on ;
4. ; ; ;
5. while (1) {
6. if (new knowledge IKB is available) {
7. ;
8. ; ;
9. if {
10. Estimate on KB and set ;
11. ; ;
12. }

13. ;
14. }
15. if (CI-CUSUM test (sample ) Stationary)
16. classification -NN ;
17. else {
18. old knowledge (more than last samples)
19. ;
20. ; ; ;
21. Estimate on KB and set ;
22. Configure the classifier on KB;
23. Configure the nonstationarity detection test on KB;
24. classification -NN ;
25. }
26. }

A Critical View of the Suggested Adaptive Algorithm: The
proposed methodology relies on the ability to detect changes in
the process under investigation and adapt the classifier to track
the process.

When the change detection test does not detect changes when
there they are (false negative), the JIT adaptive classifier cannot
commute into the nonstationary operational mode (step 12 of
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Algorithm 2) and it behaves as a traditional stationary classifier
that gains new knowledge during operational life.

The algorithm performance might not be satisfactory when
the “last samples characterize the process under investigation”
assumption does not hold. However, this hypothesis generally
holds in the practice provided that the dynamic of the change
is slower than the tracking ability of the JIT adaptive classifier
(e.g., the process changes so quickly that most of the last sam-
ples are not representative of the current state of the process).
Note that we are not requiring the process changes to be slow
(that could be an unacceptable assumption) but that such varia-
tions are slower (e.g., ten times) than the reaction ability of the
JIT adaptive classifier. This last hypothesis generally holds if
we consider abrupt and aging change models proposed in the
literature [39], [40].

Unfortunately, when the dynamic of the process under inves-
tigation is faster than the tracking ability of the JIT classifier,
last acquired samples are already obsolete and the JIT classifiers
may lead to unsatisfactory results (in feedforward neural-net-
work-based classifiers, we will update weights online, at each
instant of time, to cope with such fast evolution, as suggested
in [15]).

IV. EXPERIMENTAL SECTION

Applications considered in the companion paper are here en-
visaged to give continuity to the exposition. Applications D1
and D3 are simulated while D2 and D5 refer to real experiments;
application D4 is missing because it cannot be applied. More in
detail, we have the following.

• Application D1 refers to a synthetic monodimensional
classification problem with two equiprobable classes

each of which ruled by a Gaussian distribution
and .

• Application D2 refers to the SATIMAGE benchmark [41]
and specifically addresses Landsat multispectral scanner
images (each sample is characterized by 36 features)
aiming at classifying the nature of the soil.

• Application D3 refers to gas-self-assembled-monolayers
(SAM) [42], [43] sensors. The application considers a set
of five SAM gas sensors, two features (the sensor measure-
ment and its derivative) extracted from each signal.

• Data Set D5 refers to the physiological data benchmark
suggested in [44]. The data set contains two measurements
retrieved from naps of healthy people: the respiratory
signal (RPS) and the electrooculography signal (EOG).

The experimental campaign is organized into two subsequent
steps. We evaluate and discuss first the behavior and perfor-
mance of the proposed JIT adaptive classifier working in the
stationary case and then in the nonstationary one.

A. JIT Adaptive Classifiers in Stationary Conditions

Three performance indexes have been considered:
• classification accuracy evaluated with cross validation;
• estimated according to (4);
• computational time (CT) defined as the execution time (in

seconds) needed to perform classification (reference plat-
form: Intel Centrino 1.7 GHz, 1-GB RAM, Windows XP;
unnecessary processes aborted).

Fig. 1. Application D1. (a) Classification accuracy during the experiment (solid
line: JIT classifier; dotted line: reference �-NN; dashed line: Bayes classifier).
(b) � estimated during the experiment (solid line: � evaluated according to (4);
dotted line: � ).

To compare performance of the -NN with evaluated ac-
cording to (4), we considered a reference traditional -NN clas-
sifier operating on the same KB. In the reference -NN classi-
fier, the optimal is estimated with a LOO procedure (invoked
in correspondence of each new sample, hence constituting the
best operational condition).

Application D1: Fig. 1(a) shows the classification accuracy
of the JIT and the reference classifier as function of the number
of samples in the KB while Fig. 1(b) presents evaluated
according to (4) and the leave-one-out . When increases,
the classification accuracy of the JIT classifier increases as well
(in line with the expected asymptotical behavior) and tends to
the optimal Bayes value (horizontal dashed line). Obviously, the
same holds for the reference -NN classifier based on but
at cost of a higher computational time (see also Table I).

By inspecting Fig. 1(b), we note that an increment in im-
plies an expected increment in and that suffers from
high variance as shown by the theory, e.g., see [30] and [31].
Even if such variability also influences the initial value
to be used in (4), subsequent values are regular until a
new value needs to be estimated. The sudden changes
in Fig. 1(b) are associated with a new value inserted in (4), ac-
cording to step 9 in Algorithm 1.

Application D2: Comments provided for application D1 are
valid also for application D2. From Fig. 2, we appreciate the
agreement in accuracy and between the JIT classifier and the
reference one.

We observe that, according to (4), grows at a slower rate
with respect to (w.r.t.) in D2 than in D1; this phenomenon is
generated by size of the input space which is much larger in D2

than in D1 : the larger the , the smaller the
required increment in , as it can be immediately seen from (4)
where is at the exponent. Again, the computational complexity
is in favor of the JIT classifier (see Table I).
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TABLE I
SIMULATION RESULTS OF THE JIT ADAPTIVE CLASSIFIER AND THE REFERENCE �-NN IN STATIONARY CONDITIONS

TABLE II
NONSTATIONARY CHANGES FOR APPLICATION D1

Fig. 2. Application D2. (a) Classification accuracy during the experiment (solid
line: JIT classifier; dotted line: reference �-NN). (b) � estimated during the ex-
periment (solid line: � evaluated according to (4); dotted line: � ).

Fig. 3. Application D3. (a) Classification accuracy during the experiment (solid
line: JIT classifier; dotted line: �-NN with LOO). (b) Estimated � during the
experiment (solid line: � evaluated according to (4); dotted line: � ).

Application D3: Results are given in Fig. 3 and comments are
in line with that of application D2. Even in this case, the
function grows smoothly w.r.t. .

Application D5: Fig. 4.1(a) and 4.2(a) shows the classifica-
tion accuracy of the JIT adaptive classifier and the reference

-NN for the respiratory signal measurements (NRPS) and the
electrooculography signal measurements (NPOG), respectively.
As depicted, the proposed algorithm guarantees a classification
accuracy that is comparable with the one provided by the ref-
erence -NN and, at the same time, it significantly reduces the
required computational time (see Table I).

Again, the sudden variations in the estimated according to
(4) are associated with the need of periodically estimating a new

value.
Quantitative results have been summarized in Table I. In par-

ticular, the table shows the accuracy at the beginning and the
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Fig. 4. Application D5: NPRS and NPOG. (a) Classification accuracy during the experiment (solid line: JIT classifier; dotted line: �-NN with LOO). (b) Estimated
� during the experiment (solid line: � evaluated according to (4); dotted line: � ).

end of the experiments for the JIT adaptive classifiers and the
reference -NN (asymptotic behavior).

The inclusion of new knowledge during operational life
allows both approaches for improving their accuracy over
time. The fact that the JIT classifier performance is in line
with the optimal reference one is appreciable but the former
significantly reduces the computational time due to the compu-
tationally cheaper estimate of in the JIT classifier provided
by (4).

B. JIT Adaptive Classifiers in Stationary/Nonstationary
Conditions

Consider as performance indexes the following:
• accuracy as defined in the stationary case;
• the cardinality of the KB at time .
A nonadaptive traditional -NN classifier (which relies only

on the initial KB) was considered as a reference.
Application D1: Since application D1 is synthetic, we pi-

loted it by considering both abrupt and drift changes affecting
the process (see Table II for the characterization of the change
nature).

Fig. 5.1(b) shows the average classification accuracy of the
JIT adaptive classifier during the experiment with respect to
the reference -NN one. We observe that, while the -NN per-
manently suffers from the presence of a change (the accuracy
drops after the change), the JIT adaptive classifier reacts to
it. In particular, the JIT accuracy decreases temporarily until
the CI-CUSUM test detects the change in the data generating
process (around ), the knowledge management pro-
cedure of Algorithm 3 is then activated, obsolete knowledge is
removed from KB according to the adaptive mechanism of
Appendix B, and new information is added to the KB. Since
the data generating process commutes from a stationary con-
dition into a new stationary one after the change, the accuracy
of the JIT classification system asymptotically converges to

the performance of the Bayes classifier (as demonstrated in
Section IV-A).

The reaction time mainly depends on the strength of the
change and the sensibility of the change detection test. The
tracking phenomenon can be studied in detail by inspecting
Fig. 5.1(b) and 5.1(c). From 5.1(b), the classifiers experiences
a loss in classification accuracy immediately after the abrupt
change, which arises at time 5000.

At the beginning, just after the change, only few samples are
representative of the new state and moderately affect accuracy.
As data coming from the new state arrive and are integrated in
the KB, their impact on performance increases (and classifica-
tion accuracy decreases). Finally, the change is detected and no
more samples are simply inserted into the KB (the knowledge
management mechanisms of Algorithm 2 is activated). The re-
sult is that fresh data related to the new process state (and consti-
tuting data set ) are inserted in the KB and obsolete ones (and
constituting data set ) removed: once dominates ,
accuracy starts increasing again and reaches the new steady
state (detailed relationships between and are given in
Appendix I). Finally, once the drift has exhausted its transient
phase, the JIT classifier commutes back to the stationary mode.

Of course, no chances are given to the reference classifier
which, being not able to modify itself and tracking the new sta-
tionary state, simply integrates new samples in its KB. The result
is that it introduces a bias error associated with the presence of

(see Appendix I).
As presented in Fig. 5.2(a), the situation is similar in corre-

spondence of a slow drift targeting the process into a new sta-
tionary state.

Application D2: Results associated with this real application
are given in Fig. 6.

From Fig. 6(b), we discover that the process is stationary and
no changes are detected. In fact, increases linearly without
any intervention of the KB management mechanism. Fig. 6(a)
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Fig. 5. Application D1. (a) Value of the process during the experiment. (b) Classification accuracy during the experiment (solid line: JIT classifier; dotted line:
reference �-NN). (c) Number of samples in the KB of the JIT adaptive classifier during the experiment.

Fig. 6. Application D2. (a) Classification accuracy during the experiment (solid
line: JIT classifier; dotted line: reference �-NN). (b) Number of samples in the
KB of the JIT classifier during the experiment.

shows that the classification accuracy of the JIT classifier is in
line with that of the reference -NN one; the slight increment
in performance of the former is due to the asymptotic behavior
of the JIT classifier (which increases its accuracy as the number
of samples in the KB increases) whereas the reference -NN is
not, being configured on .

Application D3: We applied, to application D3, an abrupt
change according to a multiplicative perturbation model in
which the generic parameter is affected by a perturbation
modifying its value from to and a drift

change where parameter linearly evolves so that, at the
end of the experiment, it assumes value .
Perturbation is uniformly extracted in each experiment from
the interval and affects the resistive parameter of
each SEM sensor.

As presented in Fig. 7.1(a), we observe that the classification
accuracy of the reference -NN classifier drops after the change

and it remains there. Differently, the JIT classifier
suffers only temporarily from the change and then reacts accord-
ingly as in application D1. The size of the KB in the JIT adaptive
classifier increases up to the change detection (around )
where the knowledge management mechanisms are activated. It
is interesting to observe that the change detection test identifies
changes even after (little saw-like shapes modulated
on the main linear segments), which must be intended as change
detections associated with small perturbations; see [22].

Afterwards, since no other changes are detected in the exper-
iment (the process after the change achieves a new stationary
state), the size of the KB continues increasing hence exploiting
incoming fresh information.

The difference between the accuracy of the JIT adaptive clas-
sifier and the reference -NN is relevant also in the drift change
(Fig. 7.2). The JIT adaptive classifier reacts to the change and
remains tracked to process while the reference -NN classifier
heavily suffers from the presence of a continuous drift.

As a last note, we observe a saw-like behavior of in
Fig. 7.2(b). Such behavior is due to the continuous drift: the
change detection test proceeds identifying changes in station-
arity hence activating the adaptive mechanism of the JIT.

Application D5: As presented in Fig. 8.1(a) and 8.2(a), the
difference between the classification accuracy of the JIT adap-
tive classifier and the reference -NN increases progressively
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Fig. 7. Application D3. (a) Classification accuracy during the experiment (solid line: JIT classifier; dotted line: reference �-NN). (b) Number of samples in the
KB of the JIT classifier during the experiment.

Fig. 8. Application D5. (a) Classification accuracy during the experiment (solid line: JIT classifier; dotted line: reference �-NN). (b) Number of samples in the
KB of the JIT adaptive classifier during the experiment.

during the experiment. This implies a nonstationary behavior of
the considered data set which, by inspecting the behavior of
and comparing it with previous applications, should be associ-
ated with a drift type of change. In this nonstationary case, the
advantage of the use of the proposed JIT adaptive classifier is
remarkable both for the respiratory signal (NRPS) and the elec-
trooculography signal (NPOG).

Quantitative results of the JIT adaptive classifier and the ref-
erence -NN with LOO in case of nonstationary conditions are
summarized in Table III for the above presented applications.
Results show the effectiveness of the proposed approach: JIT

classifiers are always able to react to changes in the environ-
ment and provide a significant improvement in accuracy with
respect to nonadaptive classifiers.

V. CONCLUSION

This paper presents a novel approach to design JIT adaptive
classifiers working both in stationary and nonstationary condi-
tions. Differently from the literature, the proposed JIT adap-
tive classifier updates, in a JIT fashion (i.e., only when it is re-
ally needed), its KB by exploiting information coming from the
operational field after a change detection has been identified.
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TABLE III
SIMULATION RESULTS OF THE JIT CLASSIFIER AND THE REFERENCE �-NN. LEGEND: ��� AVERAGE ACCURACY (IN PERCENT) COMPUTED ON THE FIRST

1000 SAMPLES OF THE EXPERIMENT; ��� AVERAGE ACCURACY (IN PERCENT) COMPUTED ON THE 1000 SAMPLES SUBSEQUENT TO THE

CHANGE IN THE PROCESS; ��� AVERAGE ACCURACY (IN PERCENT) COMPUTED ON THE LAST 1000 SAMPLES OF THE EXPERIMENT

When no changes are detected, the adaptive classifier integrates
fresh information into its KB so as to improve the classifica-
tion accuracy. We demonstrate that the JIT classifier asymp-
totically converges to the Bayes classifier whenever a new sta-
tionary state can be granted. Moreover, the process behaves well
when the environment evolves not too fast and allows the KB for
containing representative training samples. Future research will
address adaptive mechanisms able to provide acceptable perfor-
mance even when the change dynamic of the process under in-
vestigation is faster than the tracking ability of the JIT adaptive
classifier.

APPENDIX I

In stationary conditions, the classification error for a
classifier trained with a training set of cardinality can be
expressed as [23]

(4)

where , , and are the Bayes error, the approximation
error (which depends on how the hypothesis space is close to
the process generating the data), and the estimation error (which
depends on the ability of the learning process to achieve the best
hypothesis provided by the classifier), respectively. Consistency
is granted provided that, as increases, . In the
specific case of -NN classifiers in stationarity conditions, we
have consistency when

and (5)

hold.

A. No Transition: Stationary Case

Consistency for the JIT is granted whenever the process keeps
operating in a stationary condition, since the classifier activates
a simple -NN classifier.

B. Transition: Moving From a Stationary State
to a Different Stationary One

As discussed, in real applications, the case where the process,
starting from a stationary situation, ends in a new stationary one
is common (e.g., following a drift, an abrupt change or a com-
bination of the two). In this case, the KB of the classifier
is composed of two distinct contributions: samples associated
with the current stationary state (training set ) and samples
associated with the previous history of the process (training set

). contains information related to the past stationary
state and that associated with the nonstationarity transition. In-
dependently from the static classifier nature, the classification
error can be expressed as

(6)

where represents a bias containing all effects induced
by . It should be noted that such error is constant and, even
when , it does not tend to 0. The consequence is that
removal of from cannot be generally obtained and
a bias error remains (the unique possibility for fully removing

is associated with a strong abrupt change making it possible
to separate old samples from new ones). Different heuristics
for removing past data reduce but general consistency
cannot be granted, yet, the suggested JIT grants consistency
with probability one, in the sense that tends to 0 with
probability 1, when . The proof of the statement relies on
[44, Lemma 5.1], whose salient derivations are here presented
to ease readability. Intuitively, the proof aims at identifying a
neighbor of the sample to be classified containing only samples
present in hence neglecting the presence of samples .

More formally, let be an input sample to be clas-
sified extracted from a continuous pdf for which the proba-
bility of extracting a specific sample is zero, let be a generic
training sample in , and let be the Euclidian
norm. Order sequence according to increasing values
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and define to be the -NN of in and
the nearest neighbor in , respectively. Under hypotheses
(5), the Lemma shows that is monotone de-
creasing and tends to 0 with probability 1 when (in other
terms, the hypersphere centered at of radius
shrinks monotonically to zero). Since we have a probability that

, there exists a , which
does not depend on or . As such, when , we can
identify a finite and for which for
all and the induced . For all , the JIT
classifier will only operate with samples in and none from

: consistency in probability is hence granted.

C. Transition: Nonstationarity

Finally, in situations where the process operates in nonsta-
tionary conditions, the classification problem is more complex.
In particular, in drifting situations, the data generating process
changes over time and consistency cannot be granted in gen-
eral: the best possible action is to provide a classifier with a
mechanism aiming at tracking the evolution change. As such,
heuristics, such as the ones suggested in JIT classifiers, must
be considered with performance and limits associated with the
particular choice of the tracking mechanism. Appendix II shows
how an adaptive selection of parameter allows the JIT classi-
fier for addressing the accuracy issue during the tracking phase.

APPENDIX II

The choice of parameter is somehow critical since it de-
fines the amount of samples to be considered representative of
the current state of the process. A fixed value for it might be
an inappropriate choice in many applications. In fact, if the dy-
namic of the change is rapid, we should consider a small (i.e.,
only few data can be assumed as representative of the change)
whereas a large would be appropriate in correspondence of
slow drifts. In other words, needs to be adaptive.

At first, we should observe that the detection test has a
memory and requires a window opened over past sample to de-
tect a change. More specifically, if the change arises at time ,
it will be detected only at time . This implies that, in case
of abrupt variations, samples between and are
representative of the change (e.g., constitute ) and should not
be discarded whereas samples acquired before belong to
( and have been defined in Appendix I). Differently, in
other scenarios (e.g., continuous drift), we cannot assure that
all samples acquired between and are representative of
the current state of the process (since the process continuously
changes); however, samples acquired before are obsolete.

A correct management of the KB has to then remove all obso-
lete (w.r.t. the current state of process) samples by eliminating,
at least, all samples acquired before and keeping the
samples acquired between and . This allows the JIT classi-
fier to minimize the accuracy loss introduced by change.

Change detection is here carried out by relying on the
CI-CUSUM [22], which requires (e.g., 500) samples
to operate. Change is detected at time when the difference

overcomes threshold (automati-
cally estimated by the test) and

Fig. 9. Example of ���� over � (taken from application D5). The change starts
at time � and is detected at time ��.

is the cumulative sum of the log-likelihood ratio between
the probability that a sample belongs to a nonstationary
process (hypothesis ) or to a stationary one (hypothesis

) and . As a consequence, from

the CI-CUSUM test, and are ;
.

The variable number of samples to be considered in the
KB is hence

(B1)

It is interesting to see in Fig. 9 an example of evolution of
over with respect to application D5. Before , (which as-
sumes a zero value in the case of a stationary hypothesis) is only
subject to statistical fluctuations; no changes are detected since

is below threshold (the solid horizontal line). Then, the
process starts drifting (time ) and only at time it is detected,
i.e., overcomes .

In an operational framework, one has to then start from
and go back in time to identify by inspecting those values of

above the “background noise” associated with a stationary
condition.
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