
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 3, MAY 2006 745

Exploiting Application Locality to Design
Low-Complexity, Highly Performing, and

Power-Aware Embedded Classifiers
Cesare Alippi, Fellow, IEEE, and Fabio Scotti, Member, IEEE

Abstract—Temporal and spatial locality of the inputs, i.e., the
property allowing a classifier to receive the same samples over
time—or samples belonging to a neighborhood—with high prob-
ability, can be translated into the design of embedded classifiers.
The outcome is a computational complexity and power aware
design particularly suitable for implementation. A classifier based
on the gated-parallel family has been found particularly suitable
for exploiting locality properties: Subclassifiers are generally
small, independent each other, and controlled by a master-en-
abling module granting that only a subclassifier is active at a time,
the others being switched off. By exploiting locality properties we
obtain classifiers with accuracy comparable with the ones designed
without integrating locality but gaining a significant reduction in
computational complexity and power consumption.

Index Terms—Application-level design, classifier design, em-
bedded systems, gated-parallel classifiers, power-aware design.

I. INTRODUCTION

EMBEDDED application, wireless sensor networks, and
pervasive computing markets force research and devel-

opment teams to develop highly performing, small, low-power
consuming and cheap final systems. In the same direction,
ICT engineers are starting addressing the design of low-power
applications also on the embedded software side to keep power
consumption at a reasonable level.

Computational complexity issues and power-aware policies
must be faced to provide an effective embedded system de-
sign providing high performance, low execution time, and en-
ergy savings. In this paper, we consider applications requiring a
computational intelligence-based classification core and an em-
bedded system tailored to it.

Power consumption and computational complexity aspects
have been directly/indirectly tackled in classifiers design where
the main goal is primarily accuracy maximization, e.g., see
[1]–[3]. References [4] and [5] propose a finite precision and
wordlength dimensioning for neural network variables, issue
that indirectly impacts on power consumption and device com-
plexity reduction. In the same direction, complexity reduction
can be achieved through minimization of the network topology
at different levels, for instance, through network pruning [6]
and dimensioning at connection [7]–[9] and neuron [10] levels.

Manuscript received April 22, 2004; revised June 4, 2005.
C. Alippi is with the Dipartimento di Elettronica e Informazione, Politecnico

di Milano, 20133 Milano, Italy (e-mail: alippi@elet.polimi.it).
F. Scotti is with the Department of Information Technologies, University of

Milan, 26013 Crema, Italy (e-mail: fscotti@dti.unimi.it).
Digital Object Identifier 10.1109/TNN.2006.872345

Since complexity is either related to the number of instructions
to be executed (execution cycles) or device complexity, com-
plexity reduction allows for energy-saving and fast execution.
In this paper we consider classification applications possessing
the locality property and show how this a priori information
can be fruitfully applied to design power and complexity aware
classifiers. The locality property requires at least one of the
following statements to hold.

1) Temporal locality: The probability that pattern pre-
sented to the classifier at time is also given at some
close time , is high.

2) Spatial locality: The probability that consecutive pat-
terns presented to the classifier belong to the same
neighborhood is high.

The locality property is particularly relevant in those appli-
cations bounded to operate in working points (e.g., under the
presence of a controller) or characterized by trajectories of the
patterns confined in limited regions. Locality properties cannot
be exploited by traditional neural classifiers, e.g., feedforward
neural classifiers, and require an ad hoc design.

To identify the most suitable structure we refer to [1] where
classifiers have been classified as: Monolithic (a unique clas-
sifier solves the task, e.g., nearest neighborhood classifiers [2],
feedforward neural network classifiers [11]), parallel (a set of
classifiers are considered and act in parallel; their output is pro-
cessed by an output grouping module to yield the final output,
e.g., gated-parallel classifiers [1], multiple classifiers [1]), cas-
cade or linear (a set of classifiers are activated in sequence, e.g.,
see [1]) and hierarchical (classifiers are combined in a tree-like
structure, e.g., mixtures of experts [12]).

We identified in a variant of the gated-parallel class the clas-
sifier structure able to fully exploit locality properties.

The novelty of the paper mainly resides in the formalization
and use of locality properties and, to a second extent, in the
rather articulated design methodology integrating accuracy and
complexity/low-power consumption constraints. Novel is also
the features optimization/reduction algorithm (which consists
in a variant of existing ones).

The structure of the paper is as follows. The topological struc-
ture of the suggested gated-parallel classifier and its design are
given in Section II. Section III, by receiving the classifier core
topology delineated in section Section II, explores the design
space with genetic algorithms to identify the most adequate
classification families (subclassifiers composing the gated-par-
allel structure might be characterized by a different classifica-
tion paradigm) and provides the target classifier. Finally, results

1045-9227/$20.00 © 2006 IEEE

746 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 3, MAY 2006

are given in Section IV where the methodology has been vali-
dated on real applications and benchmarks.

II. DESIGNING MULTIPLEXED CLASSIFIERS

A classification based on the gated-parallel philosophy
requires decomposition of the problem in subproblems, each
subproblem being associated with a subclassifier activated
by a master module. Subclassifiers are trained/configured on
appropriate subdomains, hence, maximizing their synergy with
the local environment. The grouping output module disappears
from the canonical gated-parallel structure for complexity
reasons while we allow subclassifiers to be different in struc-
ture and topology. We name the obtained classifier structure
“multiplexed classifier” since the master enabling module acts
as a multiplexer activating a subclassifier at a time, the others
being switched-off.

Temporal locality can be seen as a particular case of spatial
locality; as such, when the property holds patterns will come
with high probability from the same subdomain. The subclas-
sifier associated with such subdomain will be generally less
complex than the one associated with the whole domain and,
in addition, will continuously be active with high probability
for some time (meanwhile, all other subclassifiers are switched
off). Complexity and power consumption reduction derives
from these observations.

The design of a multiplexed classifier requires solution to the
following subproblems.

1) Topological structure identification (multiplexed clas-
sifier level): Identification of the suitable number of
subclassifiers and partitioning the input-output space
in subdomains, one for each subclassifier;

2) Topological structure identification (subclassifier
level): Selection, for each subdomain, of the features
set relevant to the specific subclassification problem;

3) Master module configuration: Design and configura-
tion of the master enabling module;

4) Subclassifiers design: Design of the final multiplexed
classifier by selecting and configuring the most suit-
able models for the subclassifiers.

Each subproblem contributes to design a performing classi-
fier as well as influences the complexity (power consumption)
aspect. Accuracy and complexity are strictly related and gen-
erally competing terms, particularly in the design of a mono-
lithic classifier where only steps 3) and 4) are envisaged (and
applied to the unique classifier); differently, a multiplexed clas-
sifier (and similar classifier structures) introduces additional de-
grees of freedom in the design space [steps 1)–2)].

To ease and make effective the methodology, we separate the
design in two phases aiming at decoupling accuracy from com-
plexity. In the first phase [steps 1)–3)] the focus is primarily
on complexity (complexity constraint integration at application
level). At this level, complexity reduction is obtained by acting
on the number of classifiers and their topological complexity
yet leaving enough degrees of freedom for a subsequent integra-
tion of the accuracy requirement. Conversely, the second phase,
[step 4)] primarily focuses on accuracy maximization by consid-
ering adequate models for subclassifiers meanwhile penalising

Fig. 1. Three modules multiplexed classifier. Subclassifiers are mutually
exclusive and enabled by the master module.

complex solutions. In a way, the envisaged two-phases design
partly decouples the complexity issue from the accuracy one by
focusing first on complexity at a coarser level (without consid-
ering accuracy) and only later requiring accuracy for the clas-
sification system (with a penalization of complex solutions). In
this section we focus the attention on the first phase; the second
phase will be addressed in Section III.

In the following we assume, without loss of generality, that
the classifier output is binary with the {good, nogood} labels
mapped in the {0,1} alphabet. As such, a classifier output equal
to 1 implies that the process has provided a bad sample. Exten-
sion to multivalued classifiers will only trivially affect step 1.

After having selected the number of subclassifiers , inte-
gration of the complexity constraint requests each subclassi-
fier to be optimized in terms of its topological structure at the
input/output level (we are neither selecting a model for the sub-
classifier nor providing a classifier topology at this stage). This
can be obtained by identifying , the minimal set of features
needed by the th subclassifier and configuring the master to ac-
tivate (value one) only a subclassifier at time. Fig. 1 shows a
multiplexed classifier with three subclassifiers after application
of steps 1)–3). We now detail the operations needed to accom-
plish steps 1)–3).

A. Domain Partitioning

The problem associated with the determination of the op-
timal number of subclassifiers can be cast into a data clustering
problem where the vicinity concept is augmented with the class
label information. If data associated with a classification value
are clustered together (spatial locality) it is likely that the cluster
will be associated with a subclassifier. Moreover, if the cluster
contains only data associated with a label (e.g., the domain is
referring to a subdomain where all elements to be classified are
good) then the subclassifier degenerates in a module always pro-
viding its label once enabled. Of course, in correspondence with
a degenerated subclassifier complexity and power consumption
are reduced to a minimal value.

Fig. 2 shows the classifier of Fig. 1 where subclassifiers M2
and M3 degenerated to constant values 1 and 0, respectively;
we assume that the reference application is a quality analysis
problem. Subclassifiers associated with good values (0 value)

ALIPPI AND SCOTTI: EXPLOITING APPLICATION LOCALITY 747

Fig. 2. Three modules multiplexed classifier. Subclassifiers are mutually
exclusive and enabled by the master module.

are considered to be the default here since it is likely that the
process will maximally provide good samples (then we need
only one of such classifiers). All degenerated classifiers are as-
sociated with the 0 value line entering the final OR gate. Like-
wise, degenerated classifiers associated with bad areas provide,
once enabled (AND gate), a value 1 to the classifier output (if
there are several degenerated classifiers of such type their en-
abling signals can be OR-ed). The digital nomenclature and de-
sign is only for its immediate intuition; we could implement the
same functionalities differently, for instance, in a fully software
solution.

In the following we will not consider degenerated models for
their obvious implementation: The attention will be focused on
nondegenerated subclassifiers. Clustering can be carried out by
considering the designer’s favorite algorithm; here, we consider
a supervised Fuzzy C-Means clustering technique [13] for its
effectiveness and computational simplicity. The clustering tech-
nique divides the samples populating a multidimensional space
into groups by means of an affinity-similarity function; no in-
formation about the point labels is considered during the clus-
tering phase. Similarity is calculated with a fuzzy membership
function, typically based on the relative distance of the sample
with respect to its centre of class. The number of clusters is gen-
erally set by the designer; a method for an automatic identifica-
tion of d based on locality property exploitation is suggested in
Section II-D; as an heuristic: should be increased whenever the
new partitioning provides a reduction in the input complexity for
nondegenerated classifiers. The rationale behind the heuristic is
based on the fact that a subclassifier requiring a reduced number
of features is likely to be less complex than the counterpart re-
quiring more inputs. Nevertheless, by increasing we increase
the complexity of the master module. It must be outlined that
non degenerated subclassifiers receive a data subdomain con-
taining both label classes and, as such, the critical classification
core is decomposed in simpler classification subproblems.

B. Feature Selection

The feature selection step is fundamental in reducing the
complexity of the multiplexed classifier since it addresses
identification of the minimal number of input features to be
presented to each subclassifier (with an obvious impact on
the classifier’s topology). In addition, features reduction also

improves the generalization ability of the classifier since re-
dundant information/degrees of freedom are removed. The
interested reader can refer to principal component analysis-like
techniques [14]–[16] for relating features reduction with gen-
eralization improvement or to [17] for neural-networks based
methods.

As it can be expected, a feature selection technique may sig-
nificantly reduce the features needed to solve a subclassification
task; since the subclassifier operates in a subdomain it is likely
that only few features will be sufficient to solve the local classi-
fication problem. By applying features selection, we obtain an
additional significant reduction in complexity.

The designer can consider his/her favorite feature selection
method. Here, we suggest a method based on a feature relevance
analysis to solve the feature selection problem (see, also, [18]).

The feature extraction problem scales badly with the number
of features since we have to generate classifiers, each dif-
fering in the combination of features: The best feature set is
finally the one maximizing accuracy. This obvious comment
hides a further problem: Each subclassifier requires a training
phase (a time consuming procedure) and a validation phase to
test accuracy.

The problem can be solved with an effective heuristics which
considers -Nearest Neighbor (-NN) classifiers and assumes
that their accuracy can be confused with the best Bayes clas-
sifier obtainable with the same feature set (i.e., the analysis is
optimistic). The advantage resides in the trivial training phase
for -NN classifiers: Given a candidate feature set the classifier
can be generated with almost no computational cost [19]. The
accuracy of the obtained classifier can be estimated with a leave
one out (LOO) validation technique [20] with a correction to
deal with the finite number of data [21], [22]. The final feature
optimization procedure is summarized in the algorithm given
in Fig. 3 where we denoted with a generic feature and with
brackets a vector of features.

Intuitively, for each subclassifiers, we are looking for the
combination of features maximizing accuracy. Due to the
computational complexity of the procedure, instructions are
introduced to limit the number of combinations to be generated
(the threshold values are introduced to prune non interesting
feature vectors as in a branch and bound approach). If the
number of features is limited we can generate all possible
classifiers and select the best performing one according to
instruction .

C. Master Module Construction

The master module can be easily built with a -NN classifier
trained over the d centres of class identified in step II-A. During
the operational phase of the multiplexed classifier the pattern
to be classified is compared with each centre of class and the
closest vector (e.g., according to the Euclidean distance) acti-
vates a subclassifier. Selecting a -NN as a master module is a
suitable choice when the number of subclassifiers is not very
high (we experienced this is the case in many applications).
Conversely, in designs where the number of subclassifiers is
high we should opt for a neural network of regression type,
e.g., FeedForward Neural Networks (FF) or Radial Basis Func-
tions (RBF) to represent efficiently the master module function.

748 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 3, MAY 2006

Fig. 3. Feature selection algorithm.

When d is high (say above 7) we suggest the designer to test
both solutions and select the least complex one.

A -NN master enabling module based on the Euclidean dis-
tance induces a linear partition of the input space and each sub-
domain becomes a polyhedron (Voronoi partition [23]). When
FF or RBF models are considered for the master module the do-
main boundaries are represented by nonlinear curves instead of
segments. Aggregation schemas for subspaces as the ones sug-
gested in [24] and [25] can also be taken into account. More in
general, any clustering and aggregation schema can be consid-
ered in the methodology provided that there it exists a master
module enabling only one submodule at-time.

D. Complexity and Application-Level Properties

In the following, we denote by the multiplexed classi-
fier, by the best non multiplexed reference classifier and by

the complexity function.

Complexity, estimated by means of the number of processor
clock cycles needed to execute the classifier code, has been
evaluated with the clock-accurate simulation tool WATTCH de-
veloped at Princeton University [26] which, by using the sim-
plescalar Portable ISA (PISA) architecture simulator [27], pro-
files the compiled code for a generic scalar architecture.

Once the clustering algorithm has partitioned the applica-
tion space, it is natural to associate an activation probability

to a generic subclassifier (is the applica-
tion input probability density function and its subdomain). In
other words denotes the probability that a pattern to be clas-
sified belongs to the th subclassifier domain of complexity .
If we denote by the complexity of the master module,
then the effective complexity of the multiplexed classifier be-
comes

(1)

The unknown probability can now be estimated by using the
available activation frequencies coming from the application
profiler. To this end we can use all available data to generate

an estimate of the probability needed in (1). If the th subclassi-
fier is activated times out of then the classifier complexity
can be expressed as

(2)

A lemma can be derived which states that if the complexity of
each subclassifier (master enabling module for the classifier plus
subclassifier complexity) is smaller than the reference classifier
one then the complexity of the resulting multiplexed classifier

is smaller than that of the reference classifier.
Lemma: If then

. The proof immediately follows by noting
that

(3)
holds for any application. It seems from experimental evidence
that the hypothesis required by the lemma is almost always sat-
isfied in nontrivial classification problems.

It is easy to extend locality properties proper of caching
mechanisms to multiplexed classifiers if the application pos-
sesses the locality property. In fact, at the multiplexed classifier
level we can define two types of locality at the subclassifier
level.

• Temporal locality: It is high the probability that if the
th subclassifier is active at time it is also active at

time . To evaluate the temporal locality at the mul-
tiplexed classifier level we generate the curve
which provides, for different values of , the prob-
ability that the th classifier active at time is con-
tinuously active up to time . When inputs are
independent and identically distributed we have that

: If a subclassifier is characterized by a
high activation probability then the temporal locality
property can be relevant.

• Sequential locality: If the th classifier is active at time
it is high the probability the same will be active at

some close time .
By exploiting the curves we can derive an automatic

procedure for selecting the number of subclassifiers . Since

ALIPPI AND SCOTTI: EXPLOITING APPLICATION LOCALITY 749

it is our interest to maximize temporal locality we can select
the optimal as the one maximizing the ensemble expectation

.

III. A GENETIC-BASED DESIGN SPACE EXPLORATION

Once the topological structure of the classifier has been fixed
as suggested in Section II in terms of master module configu-
ration, subclassifier number and input/output dimensioning, the
next design step requires configuration of each subclassifier. In
turn, this operation requires, for each subclassifier

1) identification of the most appropriate classification
model structure (e.g., k-NN, RBF, FF);

2) within each structure, determination of the most suit-
able classification model family/kernel;

3) configuration/training of each subclassifier.
In other words, we have to identify, dimension and finally train,
d subclassifiers to maximize accuracy and trade it off with com-
plexity.

By configuring we have to guarantee that the accuracy
performance of the obtained classification core is acceptable for
the application, i.e., that it is below a tolerated accuracy loss.
Such accuracy threshold depends on the intrinsic nature of the
classification problem and can be estimated through the best
classifier obtained on the available data set (i.e.,). In other
terms we require the multiplexed classifier to be designed to pro-
vide acceptable accuracy. Moreover, the designer might tolerate
an accuracy loss to gain margin in trading-off accuracy and com-
plexity.

The optimal design problem of a multiplexed classifier can
be cast in the optimization problem

(4)

where is the multiplexed classifier belonging to the classi-
fication design space , is the accuracy performance
of , represents the maximum accuracy loss tolerated
for the application and is the optimal multiplexed classi-
fier. Accuracy can be computed by using validation techniques
such as cross-validation, -fold cross-validation, LOO [21],
[28]. In the following, we consider cross-validation techniques
for validating classifier applied to a mean squared error
loss function.

Solution to problem (4) is particularly complex due to its
nonlinear nature. A simplistic approach based on a greedy phi-
losophy would be surely not appropriate since a large number
of unfeasible solutions with respect to accuracy would be gen-
erated with an obvious cost in the design phase. We can then
follow a penalising approach envisaging a penalization term to
accuracy which accounts for complexity (e.g., see [29]–[31]).
A different approach would involve Pareto optimal borders. A
simple figure of merit trading off complexity and accuracy is

(5)

where both complexity and accuracy of the classifiers are
normalized with respect to the reference best performing clas-
sifier. Normalization allows the designer for easily comparing

relative behaviors of competing terms. is a penalising
constant fixed by the designer, weighting the accuracy and com-
plexity contributions; a small implies that the accuracy con-
straint is more relevant than the complexity one (for the
optimization is driven only by accuracy).

Here we opted for the traditional genetic algorithms approach
suggested in [32], [33] for its immediate implementation and
blind approach. Obviously, the designer can select his/her fa-
vorite figure of merit/optimization techniques.

Each chromosome codes the structure of a given multiplexed
classifier . More in detail, the chromosome contains in-
formation related to model type and topological complexity for
each of the subclassifiers composing the classifier (the
chromosome is composed of genes): The weights/parameters
of the classifier are not represented in the chromosome which
only contains topological and structural information. In partic-
ular, the first gene codes the model structure and assumes values
0, 1, 2, 3 associated with -NN, FF, RBF, and linear classifiers,
respectively (for instance, a 1 in the gene of the th subclassi-
fier require the subclassifier to be implemented with a feedfor-
ward neural network). Of course, we could decide to enlarge the
gene alleles by adding other classifier structures such as Support
Vector Machines [34], [35] and Bayesian classifiers [36]. The
second gene codes the value in -NN models and the number
of hidden units in FF and RBF, respectively (for instance, if the
first gene is 1 and the second gene contains 5 it means that we
have a FF neural network with five hidden units). The RBF vari-
ance was kept fixed but it can become a free parameter to be
tuned by coding it into a gene to be added to the chromosome,
as any other parameter we wish to automatically identify.

Genetic evolution, by optimising the fitness function
, will push chromosomes undergo reproduction and

relevant building blocks related to family and structure of the
subclassifiers will be transmitted to offsprings. For each chro-
mosome (multiplexed configuration) we have to evaluate
the fitness function and, as such we have to training/configure
each subclassifier depending on the information coded in
the genes. In particular, we adopted a Levenberg-Marquardt
method with early stopping based on the test set to keep under
control overfitting phenomena [11] for neural networks and the
standard configuration procedure [28] for -NN. Again, the
designer can consider different approaches without affecting
the methodology. It should be noted that the chromosome
characterizes the classifier in terms of its topology (and, hence,
complexity) while accuracy performance can be estimated only
when each model has been configured, i.e., we have classifier

. Once the parameters of the subclassifiers have been
identified a cross-compiler automatically transforms the multi-
plexed classifier code in a C-code to be given to the WATTCH
simulator for estimating the classifier complexity. After this
step, the figure of merit (3.2) can be computed and the genetic
engine evolve.

IV. EXPERIMENTAL RESULTS

In this section, we apply the design methodology to six
applications. The first three – refer to nontrivial industrial
applications. Dataset , , and are benchmarks taken from

750 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 3, MAY 2006

Fig. 4. Six application benchmarks. The plots represent the distribution of the good (.) and bad (x) samples projected over the two most relevant features subspace.

DAMADICS Research Training Network [37], UCI dataset
repository [38], and the ELENA project [38], [39], respectively.

More specifically, the first industrial application— —refers
to a quality analysis process for the stainless steel laser cutting
industry [17]: The goal is to judge, directly during the opera-
tional phase, the local quality of the cut. We discovered, by ap-
plying the feature selection procedure suggested in Fig. 3, that
6 features are relevant to the classification problem. The identi-
fied features are the cutting speed, the pressure of the shielding
gas and four features associated with the camera inspection of
sparks produced during the cutting: The spark jet presence, the
angle of the sparks core with respect to the normal, its wideness
angle and the angle containing the whole sparks jet. A view of
the good (dot points)–no good (x points) classification space is
given in Fig. 4 with respect to the two most relevant features
(we will keep the same graphical notation for the other experi-
ments).

The second industrial application— —is related to a
3d-laser scanner for railroad tracks profile analysis [40]. The
detection system consists of a laser source, whose beam is
collimated by an optic lens into a light plane, and two CCD
cameras for complete observation of the track. Two digital
processing systems (one per camera) extract the track profile
from the retrieved images. A classification core is needed to
identify, within each column of the images, the presence of a
laser reflection. Seven features have been extracted: Minimum
and maximum intensity of the column, their difference, the
standard deviation of the intensity (std), the maximum value
of the convolution of the column intensity with a reference
Gaussian pattern (conv), the difference , and the
energy of the derivate of the column intensity.

The third industrial application— —is related to a quality
analysis for the laser spot welding in the electronics manufac-
turing industry [18]. We identified that the relevant features to
the classification problem (good/no-good weld) are the laser

pulse energy, time of the first significant minimum of the back-
reflected laser power signal, the time of turnpoint for the tem-
perature sensor and the plume delay.

The fourth dataset— —was generated from a sugar fac-
tory process data [37] to design an actuator diagnosis system
in industrial control. The dataset contains 32-dimensional sam-
ples measured from sensors applied to of the sugar plant. We
considered two features extracted from the samples: The resid-
uals of the rod displacement and the juice flow of the first plant
actuator during 10 000 seconds of functioning (30 October–17
November 2001). We grouped the classification patterns into
“fault” and “no fault” situations.

The fifth dataset— —refers to the Ionosphere problem; it
contains 34 features extracted from radar signals coming from
16 high-frequency antennas at the radar station of Goose Bay,
Labrador, USA. The experiment is subdivided into two classes:
“Good” radar returns (those signals showing evidence of struc-
ture in the ionosphere) and “Bad” returns (those signals that
passed through the ionosphere without reflection).

Dataset— —refers to the Clouds dataset from the Elena
Project. Data are synthetic; class 0 is the sum of three Gaussian
distributions, class 1 is ruled by a single Gaussian distribution.
There is an important overlap between the two classes leading
to a theoretical Bayesian error equal to 9.66%.

After having applied the first three steps of the methodology
we identify the topological structure and the s of the subclas-
sifiers as given in Table I. The table contains information char-
acterising the master module as well as the subclassifiers com-
posing the multiplexed classifier. We observe that, depending on
the particular nature of the application, the number of subclassi-
fiers, their activation probability , the number of features and
model nature, can be significantly different. The table also con-
tains, for sake of completeness, the complexity of each sub-
classifier and the subclassifier type, information derived from

ALIPPI AND SCOTTI: EXPLOITING APPLICATION LOCALITY 751

TABLE I
CONFIGURATION OF THE � S AFTER HAVING APPLIED STEPS 1–4 OF THE METHODOLOGY; TYPE=CLASSIFIER TYPE (FF=FEEDFORWARD, DEG=DEGENERATED,

LIN=LINEAR), P =THE ACTIVATION PROBABILITY OF THE i-TH SUBCLASSIFIER, FEATURES=THE ENVISIONED NUMBER OF FEATURES, C AND CMaster

REPRESENTS THE COMPLEXITY, MEASURED, IN CYCLES BY THE WATTCH PROFILER OF THE SUBCLASSIFIER AND THE MASTER MODULE, RESPECTIVELY

step 4 of the methodology. For instance, if we consider applica-
tion we have that the master module receives seven features
and is characterized by a 452.60 (code execution cycles) com-
plexity as profiled by WATTCH; the multiplexed classifier con-
tains two submodules M1 and M2. M1 is a feedforward neural
network receiving seven features, it has two hidden units and
a single output unit (i.e., FF [2 1]) while M2 is a feedforward
neural network with five hidden units and receives five input
features. M1 has activation probability 0.14 and profiled com-
plexity 560.54 while M2 is characterized by an activation prob-
ability of 0.86 and a complexity of 1131.69 cycles.

We study at this point, the curves for the experiments
to discover whether locality properties at application level hold
or not and, as such, if we can expect a significant gain in com-
plexity and power consumption by resorting to multiplexed clas-
sifiers. Results are given in Fig. 5 where each subfigure con-
tains the curves associated with all subclassifiers com-
posing a configured multiplexed classifier. As reference line we
considered the curve (plotted as a continuous line) which
represents the curve associated with an application with
d subclassifiers whose inputs are independent and identically
distributed subject to a uniform distribution. Under such hy-
potheses there is no time-dependency and temporal locality is
null. The more a curve is above the reference curve the
more the subclassifier possesses the temporal locality property.

We appreciate the fact that industrial applications - show
a good temporal locality, as we could have expected from the
continuous nature of the application while curves associated
with applications and do not possess temporal locality (as
expected). For instance, module of application shows
a high activation probability from Table I which means that the
subclassifier is more active than its companion

: In a Least Recently Used cache block substitution

policy the module will stay in the cache with high probability
(we also have to remind that subclassifiers are in general smaller
than the monolithic one). In addition, possesses an ex-
tremely good temporal locality profile from Fig. 5: The proba-
bility that will be active for all next 20 input patterns is
above 0.8, hence, leading the whole classifier complexity and
also impacting on cache miss reduction.

We can finally consider step 4 of the methodology, which re-
quires the creation of the classifiers. The reference classi-
fier required in (5) has been selected among a set of mono-
lithic classifiers. The set contained feedforward neural networks
with a number of hidden neurons in the range
trained ten times with the Levenberg-Marquardt method [41]
and Bayesian regularization [42], [43] and -Nearest Neighbor
classifier, in the range.

The most accurate classifier present in the generated classi-
fier set became . Accuracy functions and
are based on MSE cross-validation. The population required by
GAs was set to of 20 randomly initialized ; the standard
genetic algorithms procedure evolved for 100 generations.

The whole automatic design system has been implemented
in Matlab by exploiting the available Neural Network Toolbox
and PRTOOL [44]. For genetic optimization we integrated the
GATOOL toolbox [45] in our design system.

Table II presents a comparison among different classifier fam-
ilies with respect to accuracy (A, estimated with cross-valida-
tion represents the percentage classifier error), complexity (C,
in code execution cycles, as estimated by WATTCH) and power
consumption (W, in power units, as estimated by WATTCH).
The first two classifiers belong to the multiple classifier class
as suggested in [44] (of course, many other combination could
have been selected, e.g., see [1], [46]). Here, we considered two
groups of classifiers, each of which composed of three modules

752 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 3, MAY 2006

Fig. 5. T (�) curves.

TABLE II
COMPARATIVE RESULTS (A=ACCURACY, C=COMPLEXITY MEASURED IN CLOCK CYCLES, W=POWER ENERGY UNITS AS PROVIDED BY WATTCH)

(our multiplexed classifiers considered in average three subclas-
sifiers). The first group of multiple classifiers contains a -NN
classifier and two feedforward neural networks as suggested
in [44] (i.e., 4 and 20 hidden units with linear output neuron
models). The second group is similar to the first one but substi-
tutes the -NN with a linear classifier. By following the method-
ology delineated in [1] and [44] we combined the classifiers’
output with the product, mean, median, maximum, minimum,
and voting algorithms and selected the most accurate multiple
classifier based on cross-validation.

The third and the fourth classifiers are the best monolithic
-NN and monolithic feedforward we obtained on the datasets

by exploring and the number of hidden units. Finally, Table II
presents information associated with the best multiplexed
classifier identified with the proposed methodology. In bold

italic font, we show the most accurate classifier for each dataset
which, in the following becomes the reference with accu-
racy .

As we could have expected our designed multiplexed clas-
sifier behaves slightly worse that the best one. In fact, through
minimization of the figure of merit defined in (5), we aim at
trading off accuracy with complexity (i.e., we accept a slight
loss in accuracy in favor of an improvement in complexity and
power consumption).

Table III presents comparative results; there is the best
reference classifier identified in Table II and the multi-
plexed one. In column one we have the tolerated loss in per-
formance , while in the following columns we have
the estimated gain in code execution cycles, power, and real ex-
ecution time, respectively.

ALIPPI AND SCOTTI: EXPLOITING APPLICATION LOCALITY 753

TABLE III
ACCURACY LOSS, GAIN IN COMPLEXITY (C), POWER (W) AND

EXECUTION TIME (T)

The execution time was measured on a real processor (INTEL
P4 2 GHz with 750 MB RAM mounting the Microsoft WIN-
DOWS Xp operating system) by removing unnecessary oper-
ating system processes; measures were averaged over 100 pre-
sentations of the whole data set for each benchmark to reduce
the impact of unremovable operating system processes. We ob-
serve that the estimate in complexity provided by WATTCH
well matches with the real gain in execution time. The good ac-
curacy of the estimate is a fundamental result since the genetic
optimization evolves on the basis of such information.

Our experiments show that the methodology can produce
multiplexed classifiers whose accuracy is comparable to the
ones designed without the methodology but with a significant
reduction in complexity and power consumption. In some cases
the complexity gain, which expresses how many times the
reference classifier is more complex than the multiplexed one,
is very high. We observed that the gain in complexity reduces
(see) when, due to the nature of the application, the reference
classifier itself is simple: Partitioning in subclassifiers provide
little additional value.

V. CONCLUSION

This paper presents a methodology for designing embedded
classifiers which is particularly effective in those applications
possessing locality properties, i.e., strong temporal and spatial
relationships for the input patterns to be given to the classifier.
A variant of the gated-parallel classification structure has been
found particularly suitable since it allows for exploiting locality
properties, hence, providing classifiers that are less complex and
power consuming than those obtainable with a traditional de-
sign. Results, applied to a large set of applications, show that
the gain in computational complexity and power consumption
reduction can be very high depending on the strength of the
locality property and the complexity of the optimal classifier.
A relevant gain in execution time and energy saving make the
proposed solution particularly suitable to embedded systems en-
compassing a classification core. In particular, by reducing com-
plexity we can reduce the clock frequency yet keeping the same
throughput, with an additional gain in power consumption re-
duction.

REFERENCES

[1] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition:
a review,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 1, pp.
4–37, 2000.

[2] R. P. W. Duin, “A note on comparing classifiers,” Pattern Recognit. Lett.,
vol. 17, no. 5, pp. 529–536, 1996.

[3] M. H. Hassoun, Fundamentals of Artificial Neural Networks. Cam-
bridge, MA: MIT Press, 1995.

[4] C. Alippi and L. Briozzo, “Accuracy vs. precision in digital vlsi archi-
tectures for signal processing,” IEEE Trans. Comput., vol. 47, no. 4, pp.
472–477, 1998.

[5] S. Piche, “The selection of weights accuracies for madalines,” IEEE
Trans. Neural Netw., vol. 6, no. 2, pp. 432–445, 1995.

[6] A. U. Levin, T. K. Leen, and J. E. Moody, “Fast pruning using principal
components,” in Proc. Adv. Neural Info. Process. Syst., vol. 6, 1994, pp.
35–42.

[7] Y. LeCun, J. Denker, S. Solla, R. E. Howard, and L. D. Jackel, “Op-
timal brain damage,” in Proc. Adv. Neural Info. Process. Syst. II, D. S.
Touretzky, Ed., 1990.

[8] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: optimal brain surgeon,” in Proc. Adv. Neural Info. Process.
Syst., vol. 5, 1993, pp. 164–171.

[9] I. Guyon, V. Vapnik, B. Boser, L. Bottou, and S. A. Solla, “Structural
risk minimization for character recognition,” in Proc. Adv. Neural Info.
Process. Syst., 1992, pp. 471–479.

[10] C. Alippi and V. Piuri, “Topological minimization of multi-layered feed-
forward neural networks by spectral decomposition,” in Proc. IEEE Int.
Joint Conf. Neural Netw., Nov. 1992, pp. 805–810.

[11] B. D. Rypley, Pattern Recognition and Neural Networks. Cambridge,
U.K.: Cambridge Univ. Press, 1996.

[12] M. Jordan and R. Jacobs, “Hierarchical mixtures of experts and the EM
algorithm,” Neural Comput., vol. 6, pp. 181–214, 1994.

[13] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Engle-
wood Cliffs, NJ: Prentice-Hall, 1988.

[14] I. T. Jolliffe, Principal Component Analysis. New York: Springer-
Verlag, 1986.

[15] B. Schölkopf, A. J. Smola, and K.-R. Müller, “Nonlinear component
analysis as a kernel eigenvalue problem,” Neural Comput., vol. 10, no.
5, pp. 1299–1319, 1998.

[16] A. Blum and P. Langley, “Selection of relevant features and examples in
machine learning,” Artif. Intell., vol. 97, no. 1–2, pp. 245–271, 1997.

[17] C. Alippi, V. Bono, V. Piuri, and F. Scotti, “Toward real-time quality
analysis measurement of metal laser cutting,” in Proc. IEEE Int. Symp.
Virtual and Intell. Measure. Syst., May 2002, pp. 34–44.

[18] C. Alippi, P. Braione, V. Piuri, and F. Scotti, “A methodological ap-
proach to multisensor classification for innovative laser material pro-
cessing units,” in Proc. IEEE Instrum. Measure. Technol. Conf., Bu-
dapest, Hungary, 2001, pp. 1762–1767.

[19] P. H. R. Duda and D. Stork, Pattern Classification, 2nd ed. New York:
Wiley, 2001.

[20] P. A. Devijver and J. Kittler, Pattern Recognition: A Statistical Ap-
proach. London, U.K.: Prentice-Hall Int., 1982.

[21] K. Fukunaga, Introduction to Statistical Pattern Recognition. New
York: Academic, 1972.

[22] K. Fukunaga and R. R. Hayes, “Effects of sample size in classifier
design,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 8, pp.
873–885, 1989.

[23] F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental geo-
metric data structure,” ACM Comput. Surv., vol. 23, no. 3, pp. 345–405,
1991.

[24] A. Lipnickas, “Classifiers fusion with data dependent aggregation
schemes,” in Proc. Int. Conf. Info. Netw., Syst. Technol., Minsk, Belarus,
2001, pp. 147–153.

[25] L. I. Kuncheva, “Cluster-and-selection method for classifier combi-
nation,” in Proc. Int. Conf. Knowledge-Based Intell. Eng. Syst. Allied
Technol., Brighton, U.K., 2000, pp. 185–188.

[26] D. Brooks, V. Tiwari, and M. Martonosi, “WATTCH: a framework for
architectural-level power analysis and optimizations,” in Proc. Int. Symp.
Comput. Architec., 2000, pp. 83–94.

[27] T. Austin, E. Larson, and D. Ernst, “Simplescalar: an infrastructure for
computer system modeling,” Computer, vol. 35, no. 2, pp. 59–67, 2002.

[28] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[29] P. J. Edwards and A. F. Murray, “Toward optimally distributed compu-
tation,” Neural Comput., vol. 10, no. 4, pp. 987–1005, 1998.

754 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 3, MAY 2006

[30] A. Krogh and J. A. Hertz, “A simple weight decay can improve gener-
alization,” in Proc. Adv. Neural Info. Process., 1992, pp. 950–957.

[31] G. Seber and C. Wild, Nonlinear Regression. New York: Wiley, 1989.
[32] L. I. Kuncheva and L. C. Jain, “Designing classifier fusion systems by

genetic algorithms,” IEEE Energy Conv., vol. 4, no. 4, p. 327, Nov. 2000.
[33] P. Lanzi and R. L. Riolo, “Advances in evolutionary computing: theory

and applications,” in Recent Trends in Learning Classifier Systems Re-
search, ser. Natural Computing. New York: Springer-Verlag, 2003.

[34] K.-R. Mller, S. Mika, G. Rtsch, K. Tsuda, and B. Schlkopf, “An intro-
duction to kernel-based learning algorithms,” IEEE Trans. Neural Netw.,
vol. 12, no. 2, pp. 181–201, 2001.

[35] C. J. C. Burges, “A tutorial on support vector machines for pattern recog-
nition,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121–167, 1998.

[36] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classi-
fiers,” Machine Learning, vol. 29, no. 2–3, pp. 131–163, 1997.

[37] EC FP5 Research Training Network DAMADICS. Development
and Application of Methods for Actuator Diagnosis in Industrial
Control Systems. [Online]http://www.eng.hull.ac.uk/research/con-
trol/damadics1.htm

[38] C. Blake and C. Merz. UCI Machine Learning Databases Repository,
University of California-Irvine, Department of Information and Com-
puter Science. [Online]ftp://ftp.ics.edu/pub/machinelearningdatabases

[39] C. A. Cruz, D. V. Cappel, G. Guerin-Dugue, and C. Jutten. (1995) De-
liverable r3-b1-p Task b: Databases, Elena-Nervesii Enhanced Learning
for Evolutive Neural Architecture. [Online]Tech. Rep. ESPRIT-Basic
Research Project Number 6891

[40] C. Alippi, E. Casagrande, V. Piuri, and F. Scotti, “Composite real-time
image processing for railways track profile measurement,” IEEE Trans.
Instrum. Meas., vol. 49, pp. 559–564, Jun. 2000.

[41] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford,
U.K.: Oxford Univ. Press, 1996.

[42] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural
networks architectures,” Neural Comput., vol. 7, no. 2, pp. 219–269,
1995.

[43] M. Hintz-Madsen, L. K. Hansen, J. Larsen, M. W. Pedersen, and M.
Larsen, “Neural classifier construction using regularization, pruning and
test error estimation,” Neural Netw., vol. 11, no. 9, pp. 1659–1670, 1998.

[44] F. van der Heiden, R. Duin, D. de Ridder, and D. Tax, Classification, Pa-
rameter Estimation, State Estimation: An Engineering Approach Using
MatLab. New York: Wiley, 2004.

[45] A. Chipperfield, P. Fleming, and C. Fonseca, “Genetic algorithm tools
for control systems engineering,” in Proc. Adapt. Comput. Eng. Des.
Contr., 2000, pp. 950–957.

[46] R. Liu and B. Yuan, “Multiple classifiers combination by clustering and
selection,” Info. Fusion, vol. 2, pp. 163–168, 2001.

Cesare Alippi (SM’94–F’05) received the Dr.Ing.
degree in electronic engineering (summa cum
laude) in 1990 and the Ph.D. degree in computer
engineering in 1995, both from the Politecnico di
Milano, Milan, Italy. He has completed research
work in computer sciences at University College,
London, U.K., and the Massachusetts Institute of
Technology, Cambridge.

Currently, he is a Full Professor in Information
Processing Systems at the Politecnico di Milano. His
research interests include application-level analysis

and synthesis methodologies for embedded systems, neural networks, and
wireless sensor networks. His research results have been published in more that
120 technical papers in international journals and conference proceedings.

Fabio Scotti (M’03) received the Ing. degree in elec-
tronic engineering in 1998 and the Ph.D. degree in
computer engineering in 2003 from the Politecnico
di Milano, Milan, Italy.

Since 2003, he has been an Assistant Professor
with the Department of Information Technologies,
University of Milan. His research interests include
high-level system design, signal and image pro-
cessing, computational intelligence algorithms, and
their applications in the industrial field. His current
research focuses on design methodologies and
algorithms for multimodal biometric systems.

	toc
	Exploiting Application Locality to Design Low-Complexity, Highly
	Cesare Alippi, Fellow, IEEE, and Fabio Scotti, Member, IEEE
	I. I NTRODUCTION
	II. D ESIGNING M ULTIPLEXED C LASSIFIERS

	Fig.€1. Three modules multiplexed classifier. Subclassifiers are
	A. Domain Partitioning

	Fig.€2. Three modules multiplexed classifier. Subclassifiers are
	B. Feature Selection
	C. Master Module Construction

	Fig.€3. Feature selection algorithm.
	D. Complexity and Application-Level Properties
	Lemma: If $C_{i}+C_{\rm Master}<C(\Phi_{M}),\forall i,i=1,d$ the

	III. A G ENETIC -B ASED D ESIGN S PACE E XPLORATION
	IV. E XPERIMENTAL R ESULTS

	Fig.€4. Six application benchmarks. The plots represent the dist
	TABLE I C ONFIGURATION OF THE Φ_{MC} S A FTER H AVING A PPL
	Fig. 5. $T_{i}(\tau)$ curves.
	TABLE€II C OMPARATIVE R ESULTS (A =A CCURACY, C =C OMPLEXITY M
	TABLE€III A CCURACY L OSS, G AIN IN C OMPLEXITY (C), P OWER (
	V. C ONCLUSION
	A. K. Jain, R. P. W. Duin, and J. Mao, Statistical pattern recog
	R. P. W. Duin, A note on comparing classifiers, Pattern Recognit
	M. H. Hassoun, Fundamentals of Artificial Neural Networks . Camb
	C. Alippi and L. Briozzo, Accuracy vs. precision in digital vlsi
	S. Piche, The selection of weights accuracies for madalines, IEE
	A. U. Levin, T. K. Leen, and J. E. Moody, Fast pruning using pri
	Y. LeCun, J. Denker, S. Solla, R. E. Howard, and L. D. Jackel, O
	B. Hassibi and D. G. Stork, Second order derivatives for network
	I. Guyon, V. Vapnik, B. Boser, L. Bottou, and S. A. Solla, Struc
	C. Alippi and V. Piuri, Topological minimization of multi-layere
	B. D. Rypley, Pattern Recognition and Neural Networks . Cambridg
	M. Jordan and R. Jacobs, Hierarchical mixtures of experts and th
	A. K. Jain and R. C. Dubes, Algorithms for Clustering Data . Eng
	I. T. Jolliffe, Principal Component Analysis . New York: Springe
	B. Schölkopf, A. J. Smola, and K.-R. Müller, Nonlinear component
	A. Blum and P. Langley, Selection of relevant features and examp
	C. Alippi, V. Bono, V. Piuri, and F. Scotti, Toward real-time qu
	C. Alippi, P. Braione, V. Piuri, and F. Scotti, A methodological
	P. H. R. Duda and D. Stork, Pattern Classification, 2nd ed. New
	P. A. Devijver and J. Kittler, Pattern Recognition: A Statistica
	K. Fukunaga, Introduction to Statistical Pattern Recognition . N
	K. Fukunaga and R. R. Hayes, Effects of sample size in classifie
	F. Aurenhammer, Voronoi diagrams a survey of a fundamental geome
	A. Lipnickas, Classifiers fusion with data dependent aggregation
	L. I. Kuncheva, Cluster-and-selection method for classifier comb
	D. Brooks, V. Tiwari, and M. Martonosi, WATTCH: a framework for
	T. Austin, E. Larson, and D. Ernst, Simplescalar: an infrastruct
	V. N. Vapnik, The Nature of Statistical Learning Theory . New Yo
	P. J. Edwards and A. F. Murray, Toward optimally distributed com
	A. Krogh and J. A. Hertz, A simple weight decay can improve gene
	G. Seber and C. Wild, Nonlinear Regression . New York: Wiley, 19
	L. I. Kuncheva and L. C. Jain, Designing classifier fusion syste
	P. Lanzi and R. L. Riolo, Advances in evolutionary computing: th
	K.-R. Mller, S. Mika, G. Rtsch, K. Tsuda, and B. Schlkopf, An in
	C. J. C. Burges, A tutorial on support vector machines for patte
	N. Friedman, D. Geiger, and M. Goldszmidt, Bayesian network clas
	EC FP5 Research Training Network DAMADICS . Development and Appl
	C. Blake and C. Merz . UCI Machine Learning Databases Repository
	C. A. Cruz, D. V. Cappel, G. Guerin-Dugue, and C. Jutten . (1995
	C. Alippi, E. Casagrande, V. Piuri, and F. Scotti, Composite rea
	C. M. Bishop, Neural Networks for Pattern Recognition . Oxford,
	F. Girosi, M. Jones, and T. Poggio, Regularization theory and ne
	M. Hintz-Madsen, L. K. Hansen, J. Larsen, M. W. Pedersen, and M.
	F. van der Heiden, R. Duin, D. de Ridder, and D. Tax, Classifica
	A. Chipperfield, P. Fleming, and C. Fonseca, Genetic algorithm t
	R. Liu and B. Yuan, Multiple classifiers combination by clusteri

