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Classification Methods and Inductive Learning Rules:
What We May Learn From Theory

Cesare Alippi, Fellow, IEEE, and Pietro Braione

Abstract—Inductive learning methods allow the system designer
to infer a model of the relevant phenomena of an unknown process
by extracting information from experimental data. A wide range
of inductive learning methods is nowadays available, potentially
ensuring different levels of accuracy on different problem domains.
In this critical review of theoretic results gained in the last decade,
we address the problem of designing an inductive classification
system with optimal accuracy when domain knowledge is limited
and the number of available experiments is—possibly—small. By
analyzing the formal properties of consistent learning methods
and of accuracy estimators, we wish to convey to the reader the
message that the common practice of aggressively pursuing error
minimization with differentg training algorithms and classification
families is unjustified.

Index Terms—Image classification, intelligent systems, learning
systems, neural networks, pattern classification.

I. INTRODUCTION

QUALITY expectations about modern industrial produc-
tion lines are becoming more and more severe. Current

research is investigating how an industrial process can be mon-
itored and controlled in an effective way by exploiting the in-
formation produced by a stack of in-process sensors. Such an
approach is potentially effective provided that, on one side, sen-
sor data convey a sufficient amount of information and that,
on the other side, a sensible monitoring and control subsystem
can be designed so that sensor information can be effectively
and optimally exploited. This, in turns, depends on our degree
of knowledge of the process. Sometimes a formal description
of the process is available in the form of a parametric model.
In this case, the identification task is performed by estimating
the parameters’ values which minimize a suitable cost figure,
accounting the loss we have or expect to have when we assume
the obtained model as the true process. An important yet elu-
sive cost figure is risk, which aims at measuring the difference
between the true system behavior and the estimated one. In this
article, we focus instead on the case, more and more common in
industrial practice, where a formal process description is only
partially available, or not available at all, because of limited
knowledge of domain phenomena. In these cases, the system
designer must a priori commit to a nonparametric model. An
inductive learning method is a (non)parametric model structure,
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plus a criterion for tuning its degrees of freedom over experi-
mental data produced by some unknown phenomenon.

The selection of a suitable inductive learning method is a
crucial phase in any system design methodology. Today, the
application designer can choose from many inductive learn-
ing methods, ranging from linear discriminant and probabilistic
approaches, to artificial neural networks and support vector ma-
chines [4], or even from a number of integrated design method-
ologies [2], where several identification methods are elicited
to lead from a set of raw data to a full industry-strong solu-
tion. Each approach behaves more or less well when applied to
different problems in different domains.

Given these premises, it is no surprise that the following
methodological issue recurrently arises both in literature and
in industrial practice: by assuming a specific learning problem,
and risk as the cost figure, how do we select the optimal
inductive learning method among a number of candidates? In
other words: how do we select the inductive learning method
which, in probability, yields the most faithful model of the
process? In this paper, we wish to convey to the Systems, Man
and Cybernetics community the message that, when limited
a priori information is available about the system that must be
modelled, aggressively pursuing risk minimization for different
learning rules and classifier families is not justified under the
theoretical nor under the practical point of view, if we assume
that learning method, classifier family and accuracy estimators
are concretely chosen as exposed in next sections. Intuitively,
the reason is twofold: on one side, we are not able to assess the
accuracy of a solution with an arbitrary degree of confidence,
given a limited number of experiments; on the other, there are
some sufficient conditions, typically satisfied by any relevant
learning method, ensuring that a learning process converges
rapidly towards the optimal solution for that family of clas-
sifiers. For these reasons, we maintain that different learning
methods which, in theory, may yield different approximations
of the optimal solution on different classes of learning problems,
can be considered equivalent in practice, under the uncertainty
limits of the scenarios we are considering. This paper will
focus on quality analysis applications, thus to the problem of
designing binary (accept/reject) classification systems, but the
results and conclusions we will expose are general enough
to be comfortably adapted to any incarnation of the learning
problem.

The paper is structured as follows. In Section II we formally
define the learning problem, and we explain the features of a
learning method ensuring that the solutions is able to produce
have a high degree of accuracy. Three popular families of meth-
ods will be discussed in Section III, while in Section IV we
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address the problem of assessing the accuracy of the produced
classifiers. Concluding remarks will be given in Section V.

II. INDUCTIVE LEARNING

In this section, we follow the approach suggested by Vapnik
[20], [21], and Devroye et al. [6] to the analysis of classification
problems.

A. Learning Problem

Let us consider a stationary random pair, z = 〈x, y〉, x ∈ X ⊂
R

nX , y ∈ {0, 1}, and a set F = {f(x, α) |α ∈ Λ ⊂ R
nΛ} of

real-valued functions, called the hypothesis space. x is the in-
put vector of acquired data, y is the classification value, α ∈ Λ
is a controllable parameter vector and the α-indexed functions
f(x, α) : X × Λ → {0, 1} are called the hypotheses. As an ex-
ample, if F is a family of artificial neural networks α is the
vector containing all the trainable parameters of the network,
like weights and biases. Finally, we denote by L(y, f(x, α))
the loss, or discrepancy, function, expressing the cost, denoted
by L, of observing y instead of f(x, α). We define risk to be
the expected value of the loss, R(α) = E[L(y, f(x, α))], as a
function of α. In this framework, the learning problem can be
cast in an optimization problem, requiring the identification of
the α0 ∈ Λ minimizing the risk functional being in possess of a
finite data sample S = {〈x1, y1〉, . . . , 〈xn , yn 〉}, of cardinality
n. The hypothesis space represents all the available solutions,
or classifiers: the ultimate goal of training is to find a classifier
with minimum risk.

In classifier design the cost function is generally the indica-
tor over the event y �= f(x, α), which assigns a unit cost to an
incorrect classification performed by the selected hypothesis. In
this case, risk reduces to the error probability Err(α) = P{y �=
f(x, α)}. It is very often the case that f(x, α) has the form
sign(ψ(x, α) − 1/2), where ψ(x, α) is a real-valued continu-
ous function; the surface described by equation ψ(x, α) = 1/2 is
named the decision boundary of f(x, α). It can be proved [8], [6]
that there is an optimum decision boundary for any classification
problem, called the maximum a posteriori probability (MAP),
or Bayes, decision boundary fB (x) = sign(Py |x(1 |x) − 1/2),
whose risk we denote with ErrB . Intuitively, this boundary
achieves optimal separation of classes by minimizing the prob-
ability of the misclassification error which, however, cannot be
completely eliminated in the general case. As a consequence, no
classifier can be more precise that the MAP one [6], [8], whose
knowledge is associated with the knowledge of the conditional
probability distribution of y with respect to x. Assuming that
this classifier belongs to some hypothesis space is an a priori
assessment of a property of the learning problem which, usu-
ally, we do not know and does not hold. Consequently, in the
general case, we are unable to state whether the chosen hypoth-
esis space contains the Bayes classifier or not, and therefore,
we must expect that Err(α0) ≥ ErrB . The quantities ErrB and
Err(α0) are also known as the inherent and language-intrinsic
error, respectively. If we rewrite Err(α) as

Err(α) = (Err(α) − Err(α0)) + (Err(α0) − ErrB ) + ErrB

we notice that three distinct fonts of error contribute to form
Err(α):

• the inherent error ErrB , which depends only on the learn-
ing problem itself and that, for this reason, can be im-
proved only by improving the problem itself (e.g., the
process);

• the approximation error Err(α0) − ErrB , which depends
on how the hypothesis space is close to the process gen-
erating the data;

• the estimation error Err(α) − Err(α0), which depends
on the ability of the learning process to pick a hypothesis
close to the language-intrinsic one.

B. Learning Methods

An inductive (learning) principle defines how data are used
to select a classifier from a given hypothesis space. A learning
algorithm is an implementation of an inductive principle. In-
ductive principles establish a correlation between α and S by
defining a function α = α(S), or more generally a probability
distribution Pα |S . In the former case we will name the inductive
principle deterministic, stochastic in the latter. Be it determinis-
tic or stochastic, an inductive principle determines a probability
distribution over the post-training value of α. Hence, we will
make explicit the dependence of α, f(α, x) and Err(α) on the
sample size n defining, given an inductive principle, an (induc-
tive) rule as a random sequence {f(x, αn ) |n ≥ 1}, where n is,
as usual, the sample size. We will name each function in the rule
as fn , and their probability of error as Errn .

The effectiveness of a learning method is determined by the
speed with which it converges towards the optimum classifier,
be it the language-intrinsic or the Bayes one as the number n of
available experiments increases. A rule is consistent if Errn con-
verges, as n → ∞, to the optimum value Erropt (we may assume
Err(α0) or ErrB as our optimum of choice, yielding a “rela-
tive” and an “absolute” definition of consistency respectively).
We say to have good generalization ability (i.e., fast convergence
speed) if a bound g(n) exists for P{Errn > Erropt + ε}, such
that limn→∞ exp(n)g(n) < ∞ (universally, if convergence is
independent on P 〈x,y 〉). We will name the function g(n), the
convergence speed bound of the rule.

Consistency is the first property we would expect from a learn-
ing method: the training phase of a consistent methods improves
as a larger training dataset is available, while this is not neces-
sarily true for an inconsistent one. A necessary condition for a
learning method to be universally consistent is that its hypothe-
sis space contains enough functions to approximate the decision
boundary with an arbitrary degree of accuracy—intuitively, the
hypothesis space is arbitrarily expressive. However, a classifier
is always selected by means of a finite sample. This implies
that the reliability of the selection procedure decreases with
the size of the hypothesis space. Universal consistency with
fast convergence speed is achieved by balancing the estima-
tion and the approximation error for every value of n, in a way
that neither component outgrows the other one. This is usu-
ally done by defining a hierarchy of subspaces, {Fp | p ∈ N},
with Fp ⊆ Fp+1, whose limit F∗ =

⋃
p∈N

Fp contains enough
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functions to approximate every decision boundary with arbitrary
precision. If we consider as an example the space of the neural
networks with one hidden layer of neurons, Fp usually contains
all the networks with up to p hidden units. By increasing p we
span the hierarchy and obtain more expressive classifiers at the
expense of a larger model complexity. For every value of n there
is an optimum value of p, which we indicate by p(n), allowing in
probability the best tradeoff between the approximation and es-
timation error. Such optimum depends, in general, on the actual
data distribution, and cannot therefore be easily determined. On
the other hand, universal consistency is an asymptotic property,
implying that it can be achieved when p(n) has suitable asymp-
totic features, depending only on the hierarchy of subspaces and
not on the learning problem. In general, suitable parameter se-
lection criteria yield universally consistent rules, both towards
Bayes and towards the language-intrinsic classifier. This is true
for nearest neighbor classifiers, feed-forward artificial neural
networks, and almost all effective classifiers used in the related
literature. A comprehensive review of classification paradigms
with their universally consistent rules is presented in Devroye,
Györfi, and Lugosi [6]. An example of universally consistent
rule for the kNN classifier will be given in Section III.

C. Comments

The theory allows us to understand the intrinsic limits to learn-
ing. A learning problem is affected by three sources of error;
of these, the inherent one is determined by the nature itself of
the problem, and for this reason it cannot be improved by learn-
ing. The remaining error sources, i.e., the approximation and
the estimation error, are the true object of any learning proce-
dure. Asymptotically, they can both be controlled if the learning
method has some basic consistency features (which most prac-
tical methods have). But when the available dataset is small, the
dominating component of the learning error is determined, if the
method is consistent, by the approximation error, i.e., by how
well the hypotheses in the space can approximate the Bayes de-
cision boundary. In other words, the error is mainly determined
by the choice of the classifier rather than the training procedure.
As a consequence, in absence of a priori information we have
no basis to prefer a consistent learning method to another one.

III. CLASSIFIER FAMILIES

One of the most important choices the designer of a learning
system must face concerns the learning method to adopt. What
clearly emerges from an analysis of the literature is that several
combinations of structured hypothesis spaces and inductive
principles have been experimented, and for many of them some
statistical properties have been determined. In this article we
consider three different classifier families: kNN classifiers,
feed-forward artificial neural networks and support vector
machines. Their properties have been studied in three different
contexts—classical statistical estimation for kNN, Vapnik’s
Statistical Learning Theory for SVM and the theory of function
approximation for artificial neural networks—and thus they are
meaningful examples of different approaches to the learning
problem.

kNN: kNN classifiers assign the class to a point in the input
space by considering the k patterns in S that are closest to the
point according to some metric, and adopting some tie-breaking
procedure when k is even. The parameters characterizing the
family are the number k of neighbours and the metric (L2 norm
is the common choice). It can be proved that the error probability
of 1NN classifiers, as n → ∞, is bounded by twice the inherent
error [8]. For this reason, when the inherent error is expected
to be small and many patterns are available, the 1NN classifier
is quite a common solution. Should we consider a k higher
than 1? With small sample sizes 1NN yields a poor density
estimate, excessively sensitive to local glitches, than a classifier
with a slightly higher k. Conversely, a too high k yields an
oversimplified model until error becomes as bad as the lowest
of the a priori probabilities when k = n. Stone [18] proved that
all kNN rules where k(n) grows less than linearly with n are
universally consistent.

The major drawbacks of the kNN paradigm are its com-
putational load and its space occupation [6]. The basic kNN
implementation has a O(n2) space occupation and a O(knm)
computational complexity, where m accounts for the cost of
one distance computation. Implementations exist with reduced
computational complexity up to, with k and m fixed, O(n1/m ),
while edited and condensed nearest neighbour paradigms, by
storing only a subset of the available patterns, also reduce space
occupation and improve class separability.

Neural Networks: Feedforward neural networks are
grounded in the theory of continuous function approximation
[11]. A fundamental theorem from Cybenko [5] states that the
class of the networks with one hidden layer of sigmoid neurons
allows to approximate every continuous function uniformly over
a bounded set, with an arbitrary degree of precision. It can be
proved that this property ensures sufficient expressive power to
build universally consistent rules [7]. It is therefore no surprise
that practitioners have focused their attention on this class of
neural networks to solve several applications. The space oc-
cupation of a neural network linearly depends on the number
of hidden neurons. When we apply Makhoul’s remarks on the
shatter capacity of the multilayer perceptron we may obtain an
approximate asymptotic upper bound of O(i · n1/i), where i is
the number of inputs [1], [12]. The main issue of neural net-
works commonly used in practice is perhaps the lack of a com-
putationally efficient method to minimize their empirical error.
The algorithms used in practice are usually suboptimal gradient
descent heuristics, minimizing mean-square error rather than
empirical error itself. Such algorithms often get stuck in local
optima, thus hindering the effectiveness of the training phase.
Faragó and Lugosi recently proposed an algorithm that finds
the network minimizing the empirical error with a complexity
exponential both in the number of hidden neurons and in the
number of inputs, thus useless in all the practical cases [7].

Support Vector Machines: Support vector machines (SVMs)
[3], [4], [5] [20], [21] are linear classifiers in high-dimensional
spaces; the idea behind the SVM paradigm is that, if we define
a (usually nonlinear) map from the input space to a feature
space H, the sample S can be separated by a hyperplane in
H even if a separating hyperplane does not exist in X. In the
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subset of all the S-separating hyperplanes we choose the optimal
separating hyperplane as the one which maximizes margin.
Margin is defined as the distance between the hyperplane and
the closest between the positive and the negative cluster, S+ =
{〈x, 1〉 ∈ S} and S− = {〈x, 0〉 ∈ S}.

Determining the optimal separating hyperplane is a quadratic
programming problem. However, mapping the input space to a
feature space may make this problem computationally hard. At
the purpose SVMs exploit Mercer’s theory of kernel functions.
A kernel function is a symmetric function ker : X × X → R

+

having the property of being the inner product φ(x1) · φ(x2)
for some map φ : X → H: its knowledge is sufficient to deter-
mine the hyperplane in the feature space separating the patterns.
Polynomial functions and Gaussian RBF functions are example
of kernel functions, and are indeed very popular. Moreover, the
problem is relaxed to allow a hyperplane to be found when the
sample cannot be perfectly separated even in the feature space.
This is the case of C-SVMs, which modify the cost function by
adding a term which depends on the number of patterns falling
inside the margin set. A C hyperparameter can be used to de-
termine a tradeoff between the two terms of the cost function: a
higher C biases the learning process towards a smaller classifica-
tion error over the training data, rather than on a bigger margin.

The resulting hyperplane in the feature space has form

f(x, α) = sign

(
ker

(
x,

∑
i

λixi

)
+ b

)

= sign

(∑
i

λiker(x, xi) + b

)

with 〈xi, yi〉 ∈ S and i = 1 . . . n;λi are suitable multipliers.
We will call this solution the generalized optimal separating
hyperplane. We notice that f(x, α) has, indeed, the form of a
linear discriminant function where the scalar product of x for the
weight vector w has been replaced by the corresponding scalar
product in the feature space, ker(x,w). The generalized optimal
separating hyperplane is determined only by the patterns for
which λi �= 0, which are called the support vectors. In the case
of C-SVMs, the patterns which are associated to a λ such that
0 < |λ| < C lie on the margin, while patterns for which |λ| =
C lie inside the margin, possibly misclassified. This usually
means that the support vectors are a small portion of the training
data. In a sense, SVMs resemble condensed nearest neighbour
classifiers, where the decision surface is calculated as a function
of the few patterns that are close to it. A hyperplane in the feature
space is the image of a nonlinear function in the input space,
whose shape depends on the kernel function.

An attractive feature of SVMs is the fact that a quadratic pro-
gramming problem is convex, and therefore, every local solution
is also global (unique if the Hessian is positive definite). The
training phase of a SVM is computationally intensive when n is
high, but is amenable to parallelization [10], [16], [17], [19] and
always yields the optimal solution. A SVM is structurally sim-
ilar to a feedforward neural networks with one layer of hidden
neurons, where a hidden neuron performs the kernel product of
the input with a support vectors. Since support vectors are usu-

ally a small portion of the training data, the spatial complexity
of a SVM is usually low.

The C-SVM paradigm exposes as parameters C and the pa-
rameters determining the shape of the kernel (e.g., spread for the
Gaussian kernel). It is not immediately clear how the parameters
are related to the complexity of the resulting machine; here we
note that, by increasing the degree of a polynomial kernel, the
dimension of the minimal embedding space grows, and that by
reducing the spread of a RBF kernel a higher shattering capacity
is achieved as closer points can be discriminated. For its very
definition, a higher C will penalize training error more than a low
margin, and thus will bias the training phase towards a higher
model complexity. Authors argue that the training procedure
itself of SVMs is assimilable to the Structural Risk Minimiza-
tion learning principle, introduced by Vapnik [21], therefore,
ensuring fast convergence of the training error [22].

A. Comments

All the families presented in this section allow to generate
consistent rules, and this is the case with many other families we
do not consider in this article. Consistent rules converge quickly
towards the optimum classifier: when the sample is large, thus,
consistent rules have comparable accuracy. What really dif-
ferentiates a learning method from another one is how it be-
haves when the training sample is small and the approximation
error is prevalent. This piece of information can, in principle, be
exploited when sufficient a priori knowledge over the learning
problem allows to choose the family ensuring optimal approxi-
mation ability. When such knowledge is not available, as it often
happens in practice, we have no sound basis to prefer a method
to another one, at least for what concerns accuracy.

IV. ACCURACY ESTIMATION AND COMPARISON

In the previous sections, we remarked how one of the most
valuable features of a classifier is how accurately it is able to
separate “positive” from “negative” cases, and how this feature
is quantified as risk. In the previous sections we have seen how
theory allows us to understand under which conditions we may
expect that, the more patterns we use to infer a classifier, the
better the obtained classifier is. This is a strong motivation for
using all the available patterns to infer the classifier. However,
the data used to infer a classifier cannot be used to estimate
its accuracy without introducing a bias in the estimation it-
self. In other words, a tradeoff must be assessed between the
confidence in a classifier’s accuracy, and the confidence in the
estimated value of such feature. In this section, we will show
that such issue strongly affects the task of estimating the risk of
a classifier obtained by means of an inductive learning method,
especially when minimization of some error estimator is used
as an inductive principle.

A. Estimators

Many estimators for the whole-sample true error have been
proposed in literature, mostly based on resampling. Resampling
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estimators build one or more pairs of samples 〈SE , SD 〉 from
the available experimental dataset S. The SD sample is used to
induced a classifier whose accuracy is estimated by applying it
over SE . A component in the bias and variance of the estimate
is determined by the resampling operations themselves. We will
consider the following methods.

• Apparent Error Rate (AER), or resubstitution: The whole
sample S is used both to infer a classifier and to estimate
its error probability.

• Sample Partitioning (SP): SD and SE are obtained by
randomly splitting S in two disjoint subsets. SD is used
to induce a classifier and SE to estimate its accuracy.

• Leaving-One-Out (LOO): SE contains one pattern in S,
and SD contains the remaining n − 1 patterns. The pro-
cedure is iterated n times by holding out each pattern in
S, and the resulting n estimates are averaged.

• w-fold Crossvalidation (wCV): S is randomly split into
w disjoint subsets of equal size. For each subset the re-
maining w − 1 subsets are merged to form SD and the
reserved subset is used as SE . The resulting w estimates
are averaged. This procedure can be iterated and the re-
sults averaged when w � n in order to reduce the random
resampling variance. This estimate is a generalization of
LOO.

The AER estimate is, in most cases, strongly optimistically
biased since most learning methods use AER (the training error)
to tune the classifier’s parameters. Bounds for the AER estimate
can be given in many cases, but this estimate is normally too
biased to be useful in practice.

The properties of the SP estimate are related to the fact that,
by randomly splitting a sample S in two subsamples SD and SE ,
two mutually independent identically distributed (i.i.d.) datasets
are obtained. If the cardinality of SD is d, the SP estimator yields
an unbiased estimate of Errd , which can be considered as a bi-
ased estimate of the full sample error Errn . The holdout bias,
which makes the SP estimate a pessimistic one for universally
consistent rules, can be reduced by raising the d/n ratio. The
main shortcoming of the SP estimator is, precisely, the difficulty
of correctly balancing the holdout bias with the estimator vari-
ance when n is low, as bias decreases with d/n while variance
increases. According to Higleyman’s analysis [9] the d/n ratio
must be higher than 0.5, but it is common practice to lower this
ratio up to 25% to reduce holdout bias [13]. SP is an alternative
when n is sufficiently high to have both low holdout bias and
low variance.

The wCV and LOO estimates are strictly related with hold-
out. LOO can, in fact, be considered as the maximally iterated
minimum holdout bias estimate, where iteration is used to re-
duce the variance of estimating over a singleton data set. It is
based on the assumption that the learning method is stable un-
der the perturbation caused by deleting one pattern from the
sample S, i.e., a classifier structurally similar to that obtainable
from the whole sample is returned when the inductive principle
is applied to the perturbed dataset. The LOO method yields an
unbiased estimate of Errn−1, which is close to Errn except for
very low values of n. The main drawbacks of the LOO method

Fig. 1. Binomial law confidence interval for η = 0.05. The interval is de-
termined by intersecting the curves labeled with the size of the estimation
sample SE , e

def
= n − d, with the vertical line at the abscissa corresponding to

the estimated error Êrr. The upper and the lower bounds of the interval are read
on the Y axis (adapted from Higleyman [9]).

are its high variance, which is the counterpart of its low bias,
and the high computational load it requires as n training phases
must be performed.

B. Confidence and Accuracy Comparison

The problem of determining a parameter’s confidence interval
or a rejection region for a given hypothesis can be solved if we
have an estimator for the parameter whose distribution is known.
The number of classification errors over a sample not used to
induce the classifier is a binomially distributed random variable
[8]. But usually patterns do not come for free and reliable error
estimates can be obtained only through resampling.

If resamples were independent we might state that, by ap-
plying the law of large numbers, resampling estimators are ap-
proximately normally distributed. Unfortunately, this is not the
case, and we cannot plug in the classical confidence intervals
and tests the error estimates obtained via resampling without the
important caveat that, in general, we will not obtain the textbook
significance. The methods we will introduce in this subsection
are all affected by this issue.

1) Confidence Intervals: In Fig. 1 a nomograph of the 0.05-
level confidence interval for binomially distributed error count
is reported—i.e., in the assuption that SE is obtained by means
of sample partitioning. Let us now consider the general case,
and denote with Êrr the estimated error obtained by means of
some error estimator, e.g., LOO. A textbook formula yielding
an approximated η-level binomial confidence interval is

Êrr ±
(

0.5
ê

+ φ1−η/2 s1

)
(1)
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where φ is the cumulative standard normal distribution, ê is the
equivalent test sample size (for LOO it is ê = n, for SP it is of

course ê = e
def=n − d), and s1

def=
√

Êrr(1 − Êrr)/ê.
According to Martin and Hirschberg [14], the recommended

confidence interval for small samples is obtained by assessing
the Jeffreys’ a priori distribution over Err(α)(

Êrr +
a

2ê

)
± φ1−η/2 s2 (2)

where a
def=

√
2(ê − 2êmc)φ1−η/2/(ê + 3), s2

def=√
Êrr(1 − Êrr)/(ê + 2.5), and êmc is the number of

pattern in the estimation subsample which are incorrectly
classified by the classifier.

2) Performance Comparison: Given two classifiers we can
roughly compare them against classification performance by di-
rectly comparing their estimated error. The main drawback of
this method is that a difference in the estimates can be more
or less meaningful according to the accuracy of the estimates
themselves and to their mutual correlation. This does not pre-
vent learning methods using direct comparison of estimated
performances to be universally consistent, given that the sim-
ple consistency requirements exposed formerly are fulfilled, but
asymptotic results do not hold in general when the compari-
son is performed over finite validation data. As a consequence,
the procedure exposed above offers no guarantee of viability,
and we should more correctly perform a comparison through a
hypothesis test with a given level of confidence.

Let us suppose we are given two classifiers f1, f2, and a finite
sample S. We consider the problem of determining whether f1

and f2 differ for their accuracy or not (the null hypothesis being
the latter one). By assuming that both classifiers do not depend
on S (i.e., the patterns in S have not been used one or both the
classifiers), we can exploit the fact that the error count estimates
over S for the two classifiers, Êrr1 and Êrr2 respectively, are bi-
nomially distributed. In this case, if Xi ∼ N (µi, σ

2
i ), i = 1, 2,

then X1 + X2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2). Under the conditions
allowing the application of the normal approximation (n > 30
is a popular heuristics) we can use a standard Gaussian test for
Êrr1 − Êrr2, and derive an η-significance reject region [14]

|Êrr1 − Êrr2| >
s3√
n

φ1−η/2 (3)

where

s2
3 =

(
1

emc,1
+

1
emc,2

)
ê(1 − ê) ê

def=
emc,1 + emc,2

e1 + e2
(4)

the ei’s are, as usual, the size of the subsamples used to calculate
the error estimate Êrri , and emc,i is the number of estimation
patterns incorrectly classified by the classifier i. The approxi-
mation is good when e1 and e2 are comparable. This textbook
test is sufficiently accurate for most practical purposes when
compared to the exact binomial test.

When the classifiers are inferred from the same data a
paired test is more appropriate. Plugging the wCV estimator
in the classical paired Student’s t test we obtain the following

approximation:∣∣∣Êrr
wCV

1 − Êrr
wCV

2

∣∣∣ >
s4√
v
t1−η/2(v − 1) (5)

where v
def=n/w

s2
4

def=
1
v

v∑
i=1

((
Êrr

iFD

1 − Êrr
iFD

2

)
−

(
Êrr

wCV

1 − Êrr
wCV

2

))2

(6)

and Êrr
iFD

is the error estimate produced by the ith fold of
the cross-validation procedure. This approximation is, in fact,
a very rough way to compare how different inference methods
behave over the same data. The roughness depends on the fact
that it implicitly assumes the Êrr

iFD
to be independent, and we

know that this is not the case. In [14], the authors remark how es-
timation of variance performed through paired crossvalidation
is biased and highly variable, and reject this test as mislead-
ing. Moreover, the authors express their belief that no reliable
hypothesis test really exists in this case, nor our survey found
better methods than the ones here reported.

C. Comments

Determining how an error estimator is correlated to the esti-
mated parameter (the classifier’s error) is especially important
when the sample is small. Unfortunately, there are few theoret-
ical guarantees. A guideline is given by the stability principle,
requiring that the classifier(s) used to estimate accuracy are
structurally similar to the classifier(s) whose accuracy must be
estimated. Anyway, the confidence over the resulting estimated
values is usually very low, even if we optimistically assume
the ideal confidence (see, e.g., Higleyman [9], also reported in
Fukunaga [8]). Using these estimates to compare different clas-
sifiers against accuracy would be misleading to say the less, and
in fact the problem of determining a sensible hypothesis test
under the conditions we are outlining is still open.

V. CONCLUSION

In this paper, we showed how a statistical approach to the
problem of learning from data highlights the intrinsic limits
the accuracy of the classifier obtained with a limited amount
of information over a given problem domain suffers. We can-
not effectively learn from data without any explicit or implicit
a priori commitment over how the phenomena we observe are
to be interpreted and modeled. Such a commitment allows us
to prefer a formal model of the phenomena to another one, but
at the same time it limits the validity of our result, which hold
only as far as our assumption hold. The availability of new in-
formation allows us to loosen our a priori in the long run. In
no case we can improve over the intrinsic limit given by our
assumptions.

Another relevant issue is the mutual dependence of learn-
ing and performance estimation. Consistent learning methods
usually converge quickly to the language-intrinsic error. This
only depends on the hypothesis space, e.g., on the class of func-
tions that our classification method is able to implement. What
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we are not able to know is how different methods, i.e., differ-
ent class of functions, are more or less suitable to approximate
the Bayes decision boundary. Even if a method were sensibly
better than another one, it would not be possible to observe this
through the accuracy estimates, because of their low reliability
as the sample is also used to induce the classifier. It would indeed
be possible if the sample were sufficiently large, but in this case
it would be possible to relax our a priori, choose a more com-
plex (i.e., more expressive) family of learning functions, more
expressive or more appropriate to the specific learning problem,
and obtain a better classifier.

A third remark concerns the choice of the complexity of a
family of learning functions, given the size of the training set.
An excessively small family (e.g., a neural network with a low
number of hidden neurons) usually implies a high approximation
error, as the language-intrinsic classifier is far from the Bayes
one. Conversely, an excessively complex family (e.g., a neural
network with an excessively high number of hidden neurons) has
enough espressivity to reduce the approximation error, but the
training algorithm will not be able to control the estimation error,
i.e., to select the best classifier in it. While acknowledging that
the purpose of every learning methodology is striving towards a
suitable tradeoff, our previous discussion suggests that these two
adverse situations have different importance. In the former case,
the source of error is determined by our a priori choice of the
hypothesis space complexity, thus on the constraints we decide
to impose over the learning methodology. In the latter case, the
source of error is completely random and uncontrollable.

For these reasons, we maintain that the practice of aggres-
sively minimizing the estimated error is useless, because, given
that some basic consistency requirements are met, all the learn-
ing methods behave similarly when the sample is big, and when
the sample is small we are unable to state effectively which
behaves better. A simple model should be always preferred to a
more complex one, as the cost of complexity in terms of com-
putation time and silicon area has no payback in accuracy—on
the contrary, a complex model is likely less accurate than a sim-
ple one with comparable error count. We do not consider this
as a limitation: freed from the hassle of accuracy, the designer
of a learning system may focus on the features which are di-
rectly quantifiable and comparable: cost, area occupation, time
latency.
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