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Abstract—In recent years, Radio frequency (RF) sensor net-
works have been used to localize people indoor without requiring
them to wear invasive electronic devices. These wireless mesh
networks, formed by low-power radio transceivers, continuously
measure the received signal strength (RSS) of the links. Radio
Tomographic Imaging (RTI) is a technique that generates,
starting from these RSS measurements, 2D images of the change
in the electromagnetic field inside the area covered by the radio
transceivers to spot the presence and movements of animates
(e.g., people, large animals) or large metallic objects (e.g., cars).
Here, we present a RTI system for localizing and tracking
people outdoors. Differently than in indoor environments where
the RSS does not change significantly with time unless people
are found in the monitored area, the outdoor RSS signal is
time-variant, e.g., due to rainfalls or wind-driven foliage. We
present a novel outdoor RTI method that, despite the nonsta-
tionary noise introduced in the RSS data by the environment,
achieves high localization accuracy and dramatically reduces the
energy consumption of the sensing units. Experimental results
demonstrate that the system accurately detects and tracks a
person in real-time in a large forested area under varying
environmental conditions, significantly reducing false positives,
localization error and energy consumption compared to state-of-
the-art RTI methods.

Index Terms—radio tomography, device-free localization, wire-
less sensor networks, adaptive systems

I. INTRODUCTION

IN this paper, we consider the problem of detecting, localiz-

ing and tracking people not wearing/carrying an electronic

device, thus not actively participating in the localization effort,

in large and heavily obstructed outdoor environments. To

this purpose, we use an RF sensor network, i.e., a wireless

system composed of low-power, inexpensive commercial of-

the-shelf radio transceivers operating in the 2.4 GHz ISM

band [1]. These devices form a wireless mesh network by

continuously broadcasting packets and measuring the received

signal strength (RSS) of the network links. Radio tomographic

imaging (RTI) [2] techniques process the RSS measurements

collected by the RF sensors on multiple frequency channels [3]

and generate 2D images of the changes in the electromagnetic

field over the deployment area due to the presence and move-

ments of animates (e.g., people, large animals) or metallic

objects (e.g., cars [4]). By further processing these images,
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the targets can be accurately detected and tracked [5]. Our

work introduces an accurate and energy-efficient RTI method

that successfully deals with the nonstationary noise introduced

in the RSS measurements by environmental factors, such as

rainfalls or wind-driven foliage, tipically encountered in real-

world outdoor environments.

RF sensor networks represent an appealing technology for

detecting and tracking people outdoors: due to the small size

and low cost of the RF units, they are less invasive and better

conceivable than video camera networks, and considerably less

expensive than ultra-wideband (UWB) transceivers. They also

work in the dark and through smoke and non-metallic walls.

However, an RF sensor network deployed outdoors has to face

challenging conditions, different from the more static ones

typically found in real-world indoor environments [6]. The

main challenges encountered in outdoor environments are:

• The presence of what we refer to as environmental noise,

i.e., the significant variation in RSS observed when no

person is located in the monitored area due to the time-

varying multipath introduced by e.g. wind-driven foliage,

rainfalls or snow. In homes and buildings, on the contrary,

the RSS is measured in quasi stationary conditions and

does not vary significantly with time: spurious variations

in indoor conditions can be introduced by overlapping

Wi-Fi networks increasing the floor noise level of the

radio channel [7].

• The lack of an initial calibration of the system performed

in stationary conditions. Due to the intrinsic nonstation-

arity of the outdoor environment, RTI methods can not

rely on an initial calibration to estimate the average RSS

of the links of the network, which is then used as a refer-

ence to calculate the change in the electromagnetic field

introduced by the presence of people in the monitored

area.

• The need to address the energy efficiency of the system.

The remote locations and harsh weather conditions drive

the need for a battery powered capability of the RF

sensors, which, in turn, requires the adoption of an

adaptive radio duty cycling mechanism to extend the

lifetime of the system or, when energy harvesting systems

are enforced [8], reduce their cost and size.

Several application scenarios could take advantage of an RF

sensor network for outdoor people detection and localization.

For example, in natural parks populated by protected animal

species, a system composed of small and covert devices

could be used to detect and locate poachers even in areas
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characterized by a dense canopy, which can not be monitored

e.g. with air surveillance [9]. An outdoor RTI system could

be used to monitor long international borders running across

heavily forested areas from people trying to e.g. smuggle drugs

or weapons, to protect large vineyards from vandalism or theft,

or to create a virtual fence at a pasture site [10] that would

not require the cattle to wear GPS collars. Besides security

and perimeter surveillance applications, an RTI system would

greatly extend the capabilities of smart spaces such as univer-

sity campuses, malls and hospitals.

In this work, we introduce a novel RTI method for outdoor

environments achieving high detection and localization accu-

racy and improving the overall system’s energy efficiency. The

main contributions of our work can be summarized as follows:

• We characterize the relationship existing in nonstationary

outdoor environments between the variation in RSS due

to environmental noise and the link’s fade level [11], i.e.,

the difference between the measured and theoretical RSS

of a link (see Section III-A).

• We propose a method for selecting those link-frequency

channel combinations (which we refer to as link-channel

pairs) that, even in nonstationary environmental condi-

tions, appear to be the most reliable for detecting the

presence of a person on the link line, i.e., the imaginary

straight line connecting transmitter and receiver (see

Section III-B). We verify that this selection method allows

enhancing both the detection and localization accuracy

while simultaneously reducing the system’s energy con-

sumption.

• We introduce an adaptive method (see Section III-C) to

recalibrate on-line the reference RSS of the selected link-

channel pairs, even in presence of environmental noise

and people in the monitored area, and apply a background

subtraction technique (see Section III-E) on the estimated

radio tomographic images to further increase the robust-

ness of the system to time-varying environmental noise.

The performance of the outdoor RTI method was evaluated

in a set of experiments carried out in a challenging outdoor

environment, i.e, a 35m × 60m heavily forested area with

trees and bushes of various height, shape and size. Tests

were performed in different environmental conditions (e.g.,

with no wind, light breeze, or gusts of wind). False alarm

rate, localization accuracy and energy efficiency associated

with the novel method are compared to those of the RTI

methods originally introduced in [5], [12], to date the most

accurate RTI methods used in indoor environments, which we

suitably adapt to the considered outdoor scenario in order to

make a fair comparison. Experimental results demonstrate that

the novel outdoor RTI method keeps under control the false

positive and negative rates (0.04% and 0%, respectively), and

reduces both the localization error (from 20% to 46%) and the

energy consumption of the whole system (from 62% to 87%)

compared to state-of-the-art methods.

The paper is organized as follows. In Section II, we survey

the related literature on people detection and localization in

outdoor environments and on state-of-the-art RTI methods.

The novel outdoor RTI method is presented in Section III,

while the experimental setup is described in Section IV.

Section V lists the metrics used to evaluate the performance

of the system. The results of the tests are presented in Section

VI. Conclusions are given in Section VII.

II. RELATED LITERATURE

The problem of localizing and tracking people in large out-

door areas has been addressed by several works. The system

in [13] was composed of spatially distributed Radio-frequency

identification (RFID) readers measuring the RSS of RFID

tags carried by people moving in the monitored area. The

position of the targets was estimated by using a RSS-distance

model whose parameters were calibrated on-line to make the

system more robust to environmental changes. The work in

[14] presented a heterogeneous system composed of low-

quality wireless camera nodes devoted to people localization

and RFID readers devoted to identification. Both the systems

in [13] and [14] assumed that the targets to be located were

carrying an RFID tag. Device-free localization and tracking

of people has often been carried out by using visual sensor

networks [15], i.e., wireless systems composed of a large num-

ber of low-power camera nodes. However, cameras produce a

large amount of image data for the limited network’s resources.

In addition, cameras suffer from poor light conditions and

occlusions in cluttered outdoor environments (such as e.g.

forested areas). For these reasons, other works have proposed

using radars to detect personnel in heavily wooded areas.

In [16], [17], micro-Doppler signals, i.e., Doppler scattering

returns not due to gross translation of the target but are instead

produced by the periodic movements (e.g., of legs or arms) of

a walking human target, are exploited for detecting humans

and distinguishing them from other animals. However, stand-

alone low-frequency radars have a poor angular resolution. To

overcome this limitation, the work in [18] proposes a multiple-

input multiple-output (MIMO) radar exploiting the angular

diversity of spaced antennas to detect the changes in the RF

channel due to personnel in the deployment area. In this work,

we present an energy-efficient RTI method that enables device-

free detection, localization and tracking of people in large and

cluttered outdoor areas covered by a small number of low-cost

and low-power RF sensors.

The impact of environmental factors on wireless sensor

networks deployed outdoors has been previously investigated.

The works in [19], [20] analyze how the density and sea-

sonal variations of vegetation, and daily temperature/humidity

fluctuations affect the RSS and the links connectivity. The

work in [21] studies how wind, i.e., wind-driven vegetation

movement, affects the propagation of radio signals at different

frequencies (0.9, 2, 12, and 17 GHz). Experimental data

demonstrate that the variation in RSS increases with the wind

speed (more consistently at higher frequencies) and that the

fade distribution goes from being Rician to being Rayleigh

with an increasing wind speed. However, these works did

not consider the combined effect of environmental factors and

animates on the measured RSS.

Different RTI methods were introduced in [2], [22], [23],

[24]. In [3], frequency diversity was exploited to improve the
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localization accuracy. The same principle was later applied

in [5], [12]. In all these works, the RTI systems were de-

ployed in stationary indoor environments (i.e., no changes in

the environment nor time-varying environmental noise). The

system described in [6] was deployed in a real-world domestic

environment over a three months period. To recalibrate in an

on-line fashion the reference RSS values of the links of the

network, the RSS signals were low-pass filtered. By doing

this, the system maintained an high localization accuracy

(0.3 m approximately) despite the frequent changes in the

environment. In [25], the authors carried out tests in a through-

wall scenario having some of the RF sensors located in the

proximity of trees whose branches were swaying in the wind.

They proposed a subspace decomposition method to separate

the change in RSS due to human motion from that introduced

by environmental noise. However, the amount of variation

in the RSS signals due to the environment was estimated

during an initial calibration performed with no person in the

deployment area. Thus, the method assumed that the spatial

and temporal characteristics of the environmental noise were

constant. Such an assumption can not be made in a forested

outdoor environment, where the environmental noise is highly

time-varying.

The RTI methods described above did not consider the issue

of energy efficiency: the nodes radio, i.e., the most energy-

hungry component, was always on, being the nodes in receive

mode at all times, except for when they were transmitting a

packet. Energy efficient methods were presented in [26], [23],

[27]. In [26], the authors apply compressed sensing techniques

to RTI, reducing the number of links that have to be sampled in

order to reconstruct the whole image. In [23], an accurate time

synchronization protocol is used to enable radio duty cycling.

In [27], only the links near the current location of the tracked

targets are measured. In our work, we present a method to

select those link-channel pairs that are robust to environmental

noise (thus, the most informative and reliable for RTI). This

approach allows increasing the energy efficiency of the system,

while simultaneously improving its detection and localization

performance.

III. OUTDOOR RTI

This section describes the proposed outdoor RTI method.

We provide the basics of RTI, focusing on the solutions

developed to address the challenges posed by multipath-rich

and time-varying outdoor environments. The reader is invited

to refer to [2], [3], [12], [22], [28], [29] for a detailed

description of the principles of RTI. Algorithm 1 details the

novel outdoor RTI method.

A. Links Characteristics in Nonstationary Environments

First, we analyze the characteristics of the links in nonsta-

tionary outdoor environments. To do this, we use the concept

of fade level introduced in [11], which defines the relationship

between steady-state, narrow-band fading and the changes in

RSS due to a person crossing the link line. The fade level of

link l on channel c, Fl,c, can be estimated as:

Fl,c = r̄l,c − P (dl), (1)

Algorithm 1: Outdoor RTI method

input : N static RF sensors located at (estimated)

positions {xn, yn}n=1,...,N

Communicating on a set of different frequency

channels C
Measuring the RSS on the link-channel pairs of

the network.

output: P̂(k) (estimated positions of the people found in

the monitored area at time k)

1 Calculate the projection matrix Π

while (1) do

2 At the completion of each full TDMA cycle:

Update the reference RSS r̄l,c(k) of the selected

link-channel pairs

Estimate the change in RSS yl of the selected

link-channel pairs

Estimate the radio tomographic image x̂ = Πy

Apply background subtraction to x̂ and update the

background image

Apply target detection and tracking method to

estimate P̂(k)
3 Every ∆TN hours: (e.g., ∆TN = 2)

Measure the RSS of all link-channel pairs {l, c} of

the network for ∆Tc minutes (e.g., ∆Tc = 5)

Estimate fade level, Fl,c, and RSS variance, σ2
l,c, of

the link-channel pairs

Select the most reliable link-channel pairs to be used

for RTI
4 end

where:

P (dl) = Pn
0 − 10ηn log10

(

dl
dn0

)

. (2)

In (1), r̄l,c is the average RSS of link l on channel c measured

with no person in the proximity of the link line, and P (dl) is

the theoretical RSS, predicted by using the log-distance path

loss model [30], for two nodes at distance dl. The equation

in (2) represents a node-specific log-distance path loss model

whose parameters ηn, Pn
0 and dn0 (i.e., the path loss exponent,

reference path loss, and reference distance, respectively), are

derived by fitting the average RSS of those links having node

n as transmitter. In other works, e.g., [12], a global path loss

exponent was estimated by fitting the average RSS of all the

links of the network. In this work, by generating for each RF

sensor an individual distance-RSS model, hardware variability

factors (such as e.g. antenna impedance matching or relative

antenna orientation between transmitter and receiver [31]) and

local environmental differences (such as e.g. the proximity to

the node of dense foliage) are taken into consideration [32]. In

Section VI, we show that, by deriving an individual model for

each node instead of a global one, the system achieves better

detection and localization performance.

The fade level can be interpreted as a measure of whether

a link-channel pair is experiencing destructive or constructive

multipath interference (or not): in the first case, the fade level

is negative and the link-channel pair is said to be in deep fade;
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Fig. 1. Fade level vs. RSS variance due to environmental noise. The points in Figure (a) are obtained by measuring the RSS of all the link-channel pairs
of the network during four intervals of 15 minutes with wind of varying intensity blowing in the deployment area. Figure (b) shows the boxplots of the
distribution of the RSS variance of the link-channel pairs divided in sub-groups (A-F in Figure (a)) based on their fade level. On each box, the central bar
represents the median of the distribution, the edges are the 25th and 75th percentiles, and the external poinnts are meant to identify outliers, which are plotted
individually.

in the latter case, the fade level is positive and the link-channel

pair is said to be in anti-fade. However, even in multipath-

rich indoor environments, the measured RSS does not vary

significantly unless, e.g., a human body affects the propagation

of one (or more) of the multipath components. On the contrary,

outdoor environmental factors, such as wind, rainfall or snow,

introduce a significant variation in RSS even when no person

is found in the deployment area. We measure the effect of

the environmental noise on a link-channel pair as the variance

of the RSS measurements collected when no person is in the

proximity of the link line. The relationship between fade level

and environmental noise is depicted in Figure 1. The points in

Figure 1(a) are obtained by measuring the RSS of all the link-

channel pairs of the system described in Section IV during four

different intervals of 15 minutes with wind of varying intensity

blowing in the deployment area. Figure 1(b) shows the boxplot

of the RSS variance of all the link-channel pairs, divided in

six sub-groups (A-F) based on their fade level. The data show

that link-channel pairs in deep fade, i.e., those having negative

fade level, have a higher RSS variance when the wind becomes

stronger. Thus, those links hardly contribute to the detection

and localization problems.

Data in Figure 1 show that link-channel pairs with a positive

fade level (i.e., in anti-fade) are more robust to environmental

noise. Moreover, link-channel pairs in anti-fade are charac-

terized by a smaller sensitivity area [11], [12], i.e., the area

where a person affects the RSS. This area is modeled as an

ellipse having transmitter and receiver at the foci [28]: for

link-channel pairs in anti-fade, it can be modeled as a narrow

ellipse around the link line. Thus, link-channel pairs with a

positive fade level are not only more robust to environmental

noise but can also be considered more reliable indicators of

the presence of a person in the proximity of the link line.

We provide an example of this in Figure 2, which shows the

RSS, measured on different frequency channels, of a 25 m link

cutting through several branches of the trees found in the area.

During the test, carried out in a day with wind of moderate

intensity, a person crossed the link line at t = 282 s. The only

channel in anti-fade, i.e., channel 26 having Fl,c = 2.1 dBm,

measured a consistent attenuation (12 dBm) in RSS at the

crossing event, while exhibiting small variation in RSS due to

the movements of the wind-driven foliage. On the contrary, the

other two channels in deep fade show a continuous, significant

variation in RSS due to the action of the wind, and this does

not allow to unequivocally detect the crossing event.

B. Link-Channel Pairs Selection

We now present a method to select a subset of link-channel

pairs to be used for RTI. The reason for doing this is twofold:

on one hand, we want to select link-channel pairs that are

more robust to environmental noise and, at the same time,

more informative about the position of the targets in order

to enhance the detection and localization performance of the

system. On the other, we want to increase the energy efficiency

of the system, since the radio of the RF sensors can be turned

off during the TDMA slots originally allocated to the discarded

link-channel pairs.

Define Lp to be the set of link-channel pairs with positive

fade level

Lp = {(l, c) : Fl,c > 0} , (3)

where l is the link and c the frequency channel.

Due to the low nodes density typical of outdoor deployments

and the presence of several obstructions, some link-channel

pairs may measure a RSS close to the sensitivity threshold of

the radio modules (−97 dBm at typical ambient temperatures

for the radios described in Section IV-A). Links with an

average RSS close to the sensitivity threshold belong to a grey

region [33] in which their connectivity performance becomes

highly unpredictable and their RSS measurements include
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Fig. 2. The RSS, measured on different frequency channels, of a 25 m link
cutting through several branches of trees found in the area of the test. During
the test, carried out in a day with wind of moderate intensity, a person crossed
the link line at t = 282 s.

noise and interference due to very weak signals. Moreover,

the connectivity of these links is highly affected by changes

in the environment [34]. Thus, we discard all link-channel

pairs with an average RSS lower than a pre-defined threshold

Υr (we set Υr = −90 dBm).

Define Lr to be the set of link-channel pairs with average

RSS higher than Υr

Lr = {(l, c) : r̄l,c > Υr} . (4)

Now define Ls = (Lp∩Lr) to be the set of link-channel pairs

to be considered. Both the fade level and the average RSS of

the link-channel pairs are estimated when no person is found

in the deployment area.

For each link-channel pair, we calculate a weight ρl,c as

follows

ρl,c =

{

Fl,c/σ
2
l,c if (l, c) ∈ Ls

0 otherwise
, (5)

where σ2
l,c is the RSS variance measured when no person is

found in the deployment area. Consequently, link-channel pairs

having low RSS variance are assigned a higher weight, since

the variations in RSS measured on such links have a higher

probability of being human-induced.

Finally, define the set L as

L =

{

(l, c) : (l, c) ∈ Ls ∧ c = max
j∈C

ρl,j

}

, (6)

i.e., as the set in which, for each link in Ls, only the frequency

channel in C (where C represents the set of measured frequency

channels) characterized by the largest weight is included.

C. RSS Change Estimation

The change in RSS at time k for each link-channel pair in

L is estimated as:

yl,c = |rl,c(k)− r̄l,c(k)|, (7)

where rl,c(k) and r̄l,c(k) are the measured and reference

RSS of the link-channel pair (l, c), both considered at time
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Fig. 3. At time k, the FIFO buffers of the selected link-channel pairs whose
sensitivity areas (red ellipses) include a person’s estimated position are not
updated. The FIFO buffers of the other selected link-channel pairs are instead
updated. For each link-channel pair in L, the reference RSS is calculated as
the average of the RSS measurements contained in its FIFO buffer.

k, respectively. In most of the previous works (e.g., [2], [5],

[12]), the reference RSS was calculated as the average RSS

measured during an initial calibration of the system carried

out in absence of people in the monitored area. This approach

showed to be effective in stationary indoor environments. In

[6], the reference RSS was estimated in real-time by low-pass

filtering the measured RSS. This approach was effective in

a dynamic domestic environment characterized by frequent,

bursty events modifying the attenuation field of the deploy-

ment area. However, this approach was not effective when the

person to be localized was not moving for an extended period

of time (e.g., sleeping): in that case, the reference RSS quickly

converged to the measured RSS, bringing the corresponding

change in RSS to zero despite the presence of the person

in the deployment area. Due to the presence of a time-

varying environmental noise affecting the RSS measurements,

an outdoor RTI system must continuously update the reference

RSS of the selected link-channel pairs, even when people are

not moving inside the deployment area.

To estimate the reference RSS in real-time without losing

people who stop moving, we use the following procedure. We

first create, for each selected link-channel pair, a FIFO buffer

of Nw = ⌊Tw/Ts⌋ elements. Tw is the length of the considered

time window (e.g., Tw = 5 s) and Ts is the sampling interval

of the RTI system, i.e., the interval of time required by the

system to complete all the TDMA rounds of communication

on the frequency channels in C (see Section IV-A). Define

P̂(k) to be the set of estimated positions at time k of the

people located in the deployment area (P̂(k) = ∅ if no person

is in the deployment area). Since the change in RSS of a

link is assumed to be a spatial integral of the attenuation field

of the monitored area, only the attenuation in the elliptical
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sensitivity area of the link will affect its RSS. Thus, at time k,

only the FIFO buffers of link-channel pairs whose sensitivity

areas do not include one of the positions in P̂(k) are updated.

For each link-channel pair in L, the reference RSS r̄l,c(k) is

calculated as the average of the RSS measurements contained

in its FIFO buffer. In this way, the system does not require an

initial calibration to calculate the reference RSS. Moreover,

the reference RSS does not converge to the measured RSS

even when the person stops moving for an extended period of

time.

D. Radio Tomographic Image Estimation

When we consider all the N(N − 1) links of the network,

the relation between the change in the electromagnetic field

of the deployment area x and the measured RSS changes y is

modeled as:

y = Wx+ n, (8)

where y and n are vector of size N(N − 1) of the RSS

change and noise of the links of the network, respectively.

For the links belonging to L, the RSS change is calculated as

in (7). For all the others, the RSS change is zero. Vector x

represents the change in the discretized electromagnetic field

of the monitored area, i.e., the intensity of each pixel of the

radio tomographic image to be estimated. Thus, x is a vector

of size P , where P is the total number of pixels of the radio

tomographic image. Element wl,q of the weight matrix W (of

size N(N − 1)× P ) indicates how pixel q affects the change

in RSS of link l. Since the sensitivity area of a link is modeled

as an ellipse [28], wl,q is computed as:

wl,q =

{

1

Al
if dTX

l,q + dRX
l,q < dl + λ

0 otherwise
, (9)

where Al is the area of the ellipse, i.e., the sensitivity area

of link l, dTX
l,q and dRX

l,q are the distances of pixel q from the

transmitter and receiver, respectively, and λ is the parameter

defining the width of the sensitivity area. The linear model in

(8) is based on the correlated shadowing models in [2], [28],

[29].

Regularization [35] is required to solve the ill-posed prob-

lem of estimating the intensity of the many pixels in x from

the few links’ measurements in y. We apply the regularized

least square approach used also in [5], [12]:

x̂ = Πy. (10)

where:

Π = (WTW +C−1
x αr)

−1
WT . (11)

αr is the regularization parameter (e.g., αr = 0.1). The a priori

covariance matrix Cx is calculated using an exponential spatial

decay model [28]:

Cx[i, j] = σ2
xe

−di,j/δc , (12)

where σ2
x is the variance at each pixel, di,j is the Euclidean

distance between pixels i and j, and δc is a pixels’ correlation

distance parameter. In practice, the inversion matrix Π does

not depend on the environmental conditions and needs to be

calculated only once after the deployment. Thus, x̂ in (10) can

be estimated in real-time.

TABLE I
RTI PARAMETERS (DEFAULT VALUES)

Parameter Value Description

Υr −90 Link connectivity threshold [dBm]
Tw 5 Link RSS FIFO buffer length [s]
λ 2 Link ellipse (sensitivity area) width
Tb 5 Background image training period [s]
Kb 1 Background/Foreground pixel threshold
αr 0.1 Regularization parameter

σ2
x 0.001 Pixels’ intensity variance
δc 1 Pixels’ correlation distance
p 0.65 Pixel width [m]

E. Background Subtraction

When the process described in Section III-D is repeated

over time, the estimated images x̂(·) can be considered as the

frames of a video in which the targets, i.e., the people to be

tracked, move. Therefore, background subtraction techniques

[36], [37], which are widely used in machine vision to detect

and track moving objects in videos recorded by static cameras,

can be leveraged to exploit the temporal continuity of RTI

frames and improve the detection and tracking of people

entering and moving in the monitored area. We model each

pixel of the background (reference) image as a realization of

a Gaussian distribution N (µp(k), σ
2
p(k)), where µp(k) and

σp(k) are the mean and standard deviation of the intensity

of pixel p at time k. These parameters are computed using

their sample estimators from the corresponding FIFO buffers

containing Nb = ⌊Tb/Ts⌋ elements for each pixel. At time k,

the background image M(k) is calculated as:

M(k) = [µ1(k), ..., µP (k)] . (13)

Thus, the P -dimensional vector M is initialized as the estimate

of the electromagnetic field computed when no person is

inside the monitored area. The background subtracted radio

tomographic image, x̂b(k), is then defined as:

x̂b(k) = x̂(k)−M(k), (14)

and only those pixels in x̂b(k) reporting a significantly large

difference are labeled as foreground, thus considered as po-

tential moving objects, i.e., people.

However, in nonstationary outdoor environments where the

RSS signals typically change, either gradually or suddenly, the

background image needs to be constantly updated. To update

the background image M(k), we define as in [36] the set of

background pixels B(k) from the k-th frame as:

B(k) =

{

q :
|x̂q(k)− µq(k − 1)|

σq(k − 1)
≤ Kb

}

, (15)

where Kb is a threshold defining the confidence interval of

the intensity of the pixels (we set Kb = 1) and µq(k − 1)
and σq(k − 1) are the background estimates in the previous

frame k − 1. At time k, only the pixels in B(k) are updated

and replaced by the current estimates from the corresponding

FIFO buffer, while the others are left untouched. This simple,

yet effective background update method allows increasing

the difference in intensity between the pixels of the blobs

corresponding to real people and those of the blobs introduced
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(a) (b) (c)

Fig. 4. Comparing radio tomographic images estimated with different methods. In (a), the image estimated with the RTI method introduced in [5] (RFLf

in Section VI-C). In (b), the image estimated with the RTI method introduced in [12] (FLBU in Section VI-C). In (c), the image estimated with the novel
outdoor RTI method presented in this work (OUTW in Section VI-B). In the images, the white circle represents the true position of the person, while the
white cross represents his estimated position. The outdoor RTI method achieves better localization accuracy and reduces the size and intensity of the spurious
blobs in the image introduced by environmental noise, thus facilitating the target tracking process.

by the environmental noise, facilitating the blobs tracking

problem addressed in the next section.

F. People Detection and Tracking

After estimating the image x̂b, we finally have to detect and

track the blobs corresponding to real people. In order to fairly

evaluate the performance of the outdoor RTI method presented

in this work and compare it to previous works, we apply the

multiple target tracking method in [5], which provides high

accuracy (0.5 m tracking error approximately) and real-time

performance with multiple people even when these have in-

tersecting trajectories. We refer the reader to [5] for a detailed

description of the applied multiple target tracking method. We

emphasize that the computations required for estimating the

radio tomographic image and detecting and tracking the blobs

corresponding to real people can be executed in real-time on a

standard PC or laptop. The parameters of the method presented

in Section III are summarized in table I.

IV. EXPERIMENTAL SETUP

A. Hardware and Communication Protocol

In our experiments, we use TI CC2531 nodes [38], equipped

with a SWRU120b antenna [39]. The CC2531 has a nominal

maximum transmit power of 4.5 dBm, and can transmit on

one of 16 frequency channels, which are 5 MHz apart, in

the 2.4 GHz ISM band. Other frequency bands, e.g., 900
MHz and 433 MHz, could be similarly used for outdoor RTI.

An analysis of the performance of different frequency bands

for RF-based people localization in outdoor environments is

outside the scope of this paper and is left for future research.

The nodes used in the experiments drain approximately 35 mA

when the radio is on and 20 µA when off.

The RF sensors run a multi-channel TDMA communication

protocol [40] in which each node has a unique slot number,

and transmits only during its slot. Differently than in typical

indoor environments where the mesh network formed by the

RF sensors is fully connected, in outdoor deployments some

nodes may not receive packets transmitted by other nodes,

and the connectivity of links (particularly those in the grey

region [33]) may vary significantly over time. The nodes use

the information included in the received packets, i.e., ID of the

transmitting node and total number of nodes in the network, to

synchronize their TX/RX schedules and synchronously switch

on the next frequency channel. This mechanism does not

require a command from a central coordinating unit, making

the system robust both to lossy links and nodes’ failure. The

transmitted packets contain also the RSS of the most recent

packets received from the other nodes. In our experimental

setup, a sink node listens to all the packets transmitted by

the nodes. The sink node is connected to a laptop where

the RSS measurements are stored for post-processing. By

overhearing all the traffic, the sink node collects all the

RSS measurements without additional dedicated transmissions

(thus, energy consumption) by the RF sensors.
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Fig. 5. Aerial view of the forested area where the experiments were carried
out. The yellow circles represent the 20 RF sensors composing the RTI system,
in the positions estimated by using the procedure described in Section IV-C.

B. Experiments

We perform experiments in a 35m× 60m heavily forested

area, shown in Figure 5. The 20 battery-powered RF sensors

composing the system are attached using tape to the trunks

of the trees found in the area, at different heights from the

ground. The nodes communicate on four frequency channels,

specifically C = {11, 16, 21, 26}. The center frequency of a

802.15.4 channel is calculated as fc = 2400+5(c−10) MHz,

where c is the channel number. Each selected link-channel

pair is measured every Ts = 0.34 s (i.e., an approximate

sampling frequency of 3 Hz). To estimate the position of the

nodes, we measure at least two length-angle tuples from each

sensor. Similarly, we estimate the position of other reference

points throughout the deployment area. These points are used

to control the movements of the person to be localized and

estimate his true position during the tests.

The system runs for about eight hours, during which RSS

measurements are collected with and without people moving

in the monitored area. Several tests are carried out in different

environmental conditions1 (i.e., absence of wind, presence of

a light breeze, with moderately strong gusts of wind). The

1During the deployment, we did not use any other sensor (e.g., anemometer,
temperature and humidity sensor, etc.) to measure the environmental condi-
tions and their impact on the characteristics of the link-channel pairs. The
measurements collected by these sensors could be gathered at the sink node
by being included into the payload of the packets transmitted by the RF
sensors (see Section IV-A). We leave this enhancement to future work.

duration of a test is approximately five minutes. In each test,

a person walks in the deployment area carrying an audio

recorder. The person moves along straight lines connecting

the reference points and the RF sensors. Each time the person

passes nearby a reference point or a sensor, he speaks into the

audio recorder its ID number. In addition, the person stands

without moving for some time (e.g., 20 s) at various spots

inside the deployment area. By interpolating the time stamps

in the audio recording, we are able to always derive the true

position of the person during the test.

The tests carried out during the deployment are used to eval-

uate the performance of the proposed outdoor RTI system in

real-world, nonstationary conditions. The results are presented

in section VI. We consider only the situation in which only

one person at a time is located in the monitored area. However,

the outdoor RTI method presented in this work can be applied

to localize and track multiple people.

C. RF Sensors’ Position Estimation

A RTI system is composed of N static RF sensors located at

estimated positions {p̂nx , p̂
n
y}n=1,...,N . In indoor environments,

the availability of a blueprint and structural reference points

enables a more precise estimation of the sensors’ position.

In outdoor environments, the lack of a blueprint and other

reference points, the uneven terrain, and the eventual presence

of trees and bushes affecting the intra-node distance measuring

process increase the error in the sensors’ position estimates.

Ina forested environment, a GPS could be used to locate the RF

sensors. However, trees’ canopy, trunks and dense foliage near

the receiving antenna can interfere with the reception of the

signals broadcasted by the satellites, causing huge positional

errors, or totally block these signals, making the positioning

impossible [41], [42].

We now present a method to estimate the position of the

RF sensors in a forested environment in which accurate GPS

positioning is unavailable. The N RF sensors are deployed

at different heights from the ground, creating a mesh of link

lines that conforms to the terrain undulation and capable of

intersecting a human body (contrary to what happens in indoor

deployments, in this case the sensors are not on the same 2D

plane). We choose one sensor to be the reference one, having

coordinates (0, 0) in the 2D space. We proceed by manually

measuring the length and the angle (relative to the North

geomagnetic pole) of a limited number of links (measuring

all the links would be incredibly time consuming), making

sure that the measured links connect all the deployed sensors.

The initial position estimates are determined by considering

only the measurements of links which sequentially connect all

the deployed sensors. Starting from the initial position esti-

mates so derived, we iteratively find the maximum likelihood

estimate (MLE) of the position of each sensor by taking into

consideration also the other measured links. The final position

estimates of the sensors are calculated as:

argmin
{p̂n

x ,p̂
n
y }







∑

l∈T

(

dl − d̂l

)2

σ2
d

+

∑

l∈T (αl − α̂l)
2

σ2
α






, (16)
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where T is the set of links manually measured, dl and αl are

the measured length and angle of the links in T , respectively,

and d̂l and α̂l are the estimated length and angle of the links

in T , respectively, which change at each iteration depending

on the estimated positions of the RF sensors. σ2
d and σ2

α are

the variance of the length and angle measurement process,

respectively (we set σ2
d = 0.5 m and σ2

α = 5◦ after collecting

multiple consecutive measurements for the same links). Other

methods can be considered to provide an estimate of the spatial

coordinates of the sensing units, e.g., see [43] for a review. We

emphasize that, as mentioned above, the use of a GPS, which

is in principle a viable solution, is not feasible in this scenario

of heavily forested area, where the GPS signal could totally

disappear or simply fade, severely affecting the localization

accuracy.

V. EVALUATION METRICS

To evaluate the performance of the outdoor RTI method and

of the previous methods here discussed, we use three figures

of merit:

Energy efficiency coefficient: measured as the ratio of link-

channel pairs that are not selected to be used for RTI, i.e., the

ratio of TDMA slots the nodes remain in energy-saving mode,

with the radio off:

ϑe = 1−
|L|

N(N − 1) |C|
. (17)

False alarm rate: the system triggers a false alarm when-

ever it wrongly detects at least a person in the monitored area.

We measure the false alarm rate as the percentage of radio

tomographic images where the real and estimated number of

people in the monitored area differ.

Localization accuracy: measured as the root mean squared

error (RMSE) of the position estimates, ẑ(k), provided by the

RTI system:

ē =

(

1

K

K
∑

k=1

(ẑ(k)− z(k))
2

)1/2

, (18)

where K is the total number of position estimates provided by

the system during the deployment and z(k) the true position

of the person at time k. We calculate the RMSE both when

the person is moving, ēm, or standing, ēs.

VI. EXPERIMENTAL RESULTS

In this section, we first present the experimental results of

the outdoor RTI method. We also consider modified versions

of the original algorithm, and demonstrate that the method

we propose outperforms the modified versions in terms of

false alarm rate, energy efficiency and localization accuracy.

Then, we evaluate state-of-the-art indoor RTI methods (i.e.,

[5], [12]), which we suitably adapt to the considered outdoor

scenario to make a fair comparison. Finally, we analyze the

sensitivity of the outdoor RTI method to the parameters in

Table I.

The results here presented have been obtained by consider-

ing 20 RF sensors. Larger numbers of nodes do not necessarily

provide better results, as demonstrated in [6], [44]. While more

sensors provide on average a higher localization accuracy, both

their small-scale (i.e., in the order of the wavelength) position

and the changing characteristics of the monitored environment

can heavily affect the characteristics of the link-channel pairs,

such that at times more RF sensors achieve a worse accuracy

than fewer located in optimal spots.

A. Outdoor RTI Method Performance

We evaluate the performance of the outdoor RTI method by

post-processing all the RSS measurements collected during the

deployment of the system. The system operated for approxi-

mately 8 hours in a day with wind of varying intensity. During

this time, the deployment area remained empty approximately

90% of times, while in the remaining 10% a person was

present. The set L of link-channel pairs selected and used for

RTI is updated every two hours (∆TN = 2 in Algorithm

1). Thus, L is updated a total of four times during the

deployment. Each time, the system measures the RSS of all

the link-channel pairs of the network for 5 minutes. At the

end of this interval, the link-channel pairs of the network are

weighted and the most reliable selected. The length of the

time interval ∆TN might depend on the expected environ-

mental conditions: smaller ∆TN values would increase the

promptness of the adaptation mechanism at the expense of

an increase in the energy consumption of the RF sensors.

Conversely, increasing ∆TN might result in a decrease of

the energy consumption at the expense of a possible delay in

the adaptation promptness. We also comment that, besides the

periodic triggering of the update procedure set by ∆TN, we

could integrate the RTI system with additional sensors (e.g.,

temperature or humidity sensors) to actively trigger the link-

channel pairs update procedure.

First, we evaluate the performance of the novel outdoor RTI

method described in Section III. We name the method OUT+.

On average, only 12.8% of the link-channel pairs are selected,

i.e., ϑe = 87.2%. When the deployment area is empty, the RTI

system triggers two false alarms, detecting the presence of a

person in the monitored area for 12 s, i.e., a 0.04% false alarm

rate. Instead, when a person is located in the monitored area

area, the RMSE is ēm = 3.8 m when the person is moving

and ēs = 3.2 m when the person does not move.

B. Modified Outdoor RTI Methods

We now evaluate the performance of modified versions of

the proposed outdoor RTI method OUT+. First, we extend the

set of selected link-channel pairs L by considering for each

link l ∈ Ls the RSS measurements collected on all the selected

frequency channels (instead of considering only the frequency

channel having the highest weight ρl,c). In this version of the

outdoor RTI method (which we name OUTw), the change in

RSS for link l at time k is calculated as:

yl(k) =

∑

c∈Ls
ρl,c|rl,c(k)− r̄l,c(k)|
∑

c∈Ls
ρl,c

, (19)

i.e., as the weighted average of the change in RSS measured

on the selected frequency channels. This method that merges

the RSS data collected for the same link on different frequency
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TABLE II
SUMMARY OF THE PERFORMANCE OF OUTDOOR RTI METHODS

PATH LOSS EXPONENT LINK-CHANNEL SELECTION PERFORMANCE

METHOD Node-specific Global Heaviest channel Weighted average ϑe False alarm rate [%] ēm [m] ēs [m]

OUT+ X X 87.2 0.04 3.8 3.2

OUTw X X 67.2 0.07 3.7 3.2

COM+ X X 88.3 0.06 5.0 4.2

COMw X X 68.7 0.07 4.9 4.1

channels was originally introduced (in an indoor localization

context) in [5]. With OUTw, the system selects on average

32.8% of the link-channel pairs, i.e., ϑe = 67.2%, and has

a 0.07% false alarm rate (two triggered false alarms, person

detected in the deployment area for 18 s). The RMSEs are

ēm = 3.7 m and ēm = 3.2 m. Thus, the neglectable 0.1 m

improvement in ēm of OUTw over OUT+ comes at the cost

of a 20% higher energy consumption.

Now, instead of deriving a node-specific path loss exponent,

ηn in (2), to estimate the fade level of the link-channel pairs,

we derive a global path loss exponent for all the nodes,

and we still apply the link-channel pairs selection procedure

in Section III-B. This approach was applied (in an indoor

localization context) in [12]. We name this modified version

of the outdoor RTI method COM+. With COM+, 11.7% of

the link-channel pairs are selected, i.e., ϑe = 88.3%, and the

false alarm rate is 0.06% (two triggered false alarms, person

detected in the deployment area for 16 s). The RMSEs are

ēm = 5.0 m and ēm = 4.2 m. Thus, deriving a global path loss

exponent decreases the localization accuracy of the system by

approximately 30% compared to deriving one for each node.

Finally, in a version we name COMw, we still derive a

global path loss exponent (as in COM+), but this time we

apply the weighted average approach in (19) for estimating

the change in RSS of the links. With COMw, the false alarm

rate is 0.07% (two triggered false alarms, person detected in

the deployment area for 17 s), the percentage of selected link-

channel pairs is 31.3%, i.e., ϑe = 68.7%, and the RMSEs are

ēm = 4.9 m and ēm = 4.1 m. Results and characteristics of

the outdoor RTI methods discussed above are summarized in

Table II.

C. Comparison with Previous RTI Methods

We now evaluate the performance of the state-of-the-art

RTI methods in [5] and [12] on the same RSS measurements

used to derive the results in Section VI-A. Both methods

were developed for stationary indoor environments. Thus, in

order to fairly evaluate their performance, we adapt both

methods to nonstationary outdoor environments by applying

the reference RSS estimation method in Section III-C and the

people detection and tracking method in Section III-F.

Consider the method in [12]. The width λ of the elliptical

sensitivity area of the link-channel pairs of the network de-

pends on both the fade level and the sign of the measured

change in RSS. The fade level is estimated by deriving a

global path loss exponent for all the nodes. The RSS variance

of the link-channel pairs estimated in stationary conditions is

not taken into consideration. We refer to this method as fade

level-based, or FLB, and consider three different versions:

TABLE III
SUMMARY OF THE PERFORMANCE OF PREVIOUS RTI METHODS

METHOD ϑe False alarm rate [%] ēm [m] ēs [m]

FLBU 0.0 0.74 4.3 4.1

FLBw 55.0 0.89 6.1 7.2

FLB+ 83.1 1.41 7.2 8.6

RFLp 25.0 0.92 5.6 6.9

RFLf 50.0 0.95 5.6 6.5

RFL+ 78.8 1.19 6.1 7.3

FLBU : all the link-channel pairs are selected.

FLBw: the link-channel pairs with an average RSS, estimated

in stationary conditions, lower than Υr are discarded.

Among the remaining ones, only the link-channel pairs

having positive fade level are selected. The weighted

average approach in (19) is applied.

FLB+: the link-channel pairs with an average RSS, estimated

in stationary conditions, lower than Υr are discarded. For

each link, only the frequency channel with the maximum

fade level is selected.

The results are listed in Table III. Differently than with the

outdoor RTI method, the localization accuracy of the FLB
method in [12] decreases when fewer link-channel pairs are

selected. This makes the FLB method less energy-efficient

than the proposed outdoor RTI method. Moreover, even when

all the link-channel pairs are considered, as with FLBU ,

the localization accuracy is approximately 20% lower than

with OUT+, which uses only 12.8% of the link-channel

pairs. In comparison, with FLB+, i.e., the most energy

efficient version using only 16.9% of the link-channel pairs,

the localization accuracy is approximately 125% worse than

with the corresponding outdoor method OUT+. As far as the

false alarm rate is concerned, the three considered versions

of the method in [12] have a considerably worse performance

than the proposed outdoor RTI method: the false alarm rate

is 0.74% with FLBU (12 triggered false alarms, person

detected in the monitored area for more than three minutes),

and 1.41% with FLB+ (27 triggered false alarms, person

detected in the monitored area for approximately six minutes).

These results demonstrate that the method in [12] is prone to

trigger several false alarms in a time-varying and multipath-

rich outdoor environment due to the significant noise in the

RSS measurements introduced by environmental factors.

We now consider the RTI method in [5]. There, the relative

fade level of a link-channel pair {l, c} is estimated as the

difference between its average RSS estimated in stationary

conditions, r̄l,c and the lowest average RSS measured on the
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Fig. 6. Comparison of the performance of the considered RTI methods, in
terms of localization accuracy and energy efficiency. The RMSE reported in
the plot is computed as the average of ēs and ēm.

frequency channels in C:

Fl,c = r̄l,c −min
c∈C

r̄l,c. (20)

Thus, Fl,c ≥ 0, and Fl,c = 0 for one channel on each link. The

RSS variance of the link-channel pairs estimated in stationary

conditions is not taken into consideration. We refer to the RTI

method in [5] as relative fade level, or RFL, and consider three

different versions:

RFLp: the link-channel pairs with Fl,c > 0 are selected. The

change in RSS of the links is estimated by applying the

weighted average approach in (19).

RFLf : the link-channel pairs with an average RSS, measured

in stationary conditions, lower than Υr are discarded.

Among the remaining ones, the link-channel pairs with

Fl,c > 0 are selected. The weighted average approach in

(19) is applied.

RFL+: the link-channel pairs with an average RSS, measured

in stationary conditions, lower than Υr are discarded. For

each link, only the frequency channel with the maximum

fade level is selected.

The results are summarized in Table III. Despite selecting

more link-channel pairs, the three considered versions of the

method in [5] have a localization accuracy from 73% (with

RFLf ) to 91% (with RFL+) worse than that of the most

energy efficient outdoor RTI method OUT+. In addition, the

method in [5] has a significantly higher false alarm rate (0.92%

with RFLp, 0.95% with RFLf , 1.19% with RFL+) than the

proposed outdoor RTI method (0.04% with OUT+).

D. Background Subtraction Contribution

We now analyze the effects of the background subtraction

algorithm detailed in Section III-E on the localization accuracy

of the outdoor RTI method (OUT+). Figure 7 shows the

cumulative distribution functions of ēs and ēm, both when

background subtraction is applied (solid lines) or not applied

(dashed lines). Background subtraction increases the robust-

ness of the motion detection and localization process to the

RSS variation due to environmental factors, which would

introduce spurious blobs in the estimated radio tomographic

images. Consequently, by applying the background subtraction

Fig. 7. Cumulative distribution functions of ēs and ēm of the novel outdoor
RTI method (OUT+), both when the background subtraction algorithm
detailed in Section III-E is applied (solid lines) or not applied (dashed lines).

algorithm, the RTI system is overall more accurate, and does

not incur in very high (i.e., above 10 m) localization errors

when links located far away from the current position of the

target are affected by a consistent environmental noise.

E. Sensitivity Analysis

We analyze the effect of three parameters in Table I on

the localization accuracy of the system. Figure 8 shows how

ēm and ēs are affected by λ, i.e., the width of the elliptical

sensitivity area of the links, Tw, i.e., the length of the time

window used to determine the reference RSS of the links,

and Tb, i.e., the length of the background image training

period. Simulations are performed by post-processing the RSS

measurements collected during the deployment of the system

when the person was located inside the monitored area. In the

simulations, we set Tw = Tb. The results in Figure 8 indicate

that the proposed outdoor RTI method is robust to variations

of the three considered parameters, as both ēm and ēs have a

12% maximum variation from the values reported in table II.

F. System Lifetime

Finally, we evaluate the impact of the novel outdoor RTI

method OUT+ on the projected lifetime of the system. The

parameter driving the energy consumption of the nodes is the

radio duty cycle, that depends on which link-channel pairs are

selected for RTI. As detailed in Algorithm 1, every ∆TN hours

the system measures all the link-channel pairs of the network

for ∆Tc minutes. At the end of this period, the most reliable

link-channel pairs are selected. The projected lifetime of the

system is estimated as the time elapsed until a node runs out

of power.

We use the Monte Carlo method: in each simulation, every

∆TN hours, the weights ρl,c in (5) that were calculated during

the real deployment of the system are randomly re-assigned

to the link-channel pairs of the network. Based on this re-

assignment, a new set L of link-channel pairs to be used for

RTI is defined every ∆TN hours. We assume that the nodes

are equipped with D-type alkaline batteries having an 18 Ah

capacity. However, we do not take into consideration the effect
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Fig. 8. Results of the sensitivity analysis of the energy-efficient outdoor RTI method (OUT+). In (a), the localization accuracy of the system with different
values of λ, i.e., the width of the elliptical sensitivity area of the links. In (b), we modify the length of the time window used to determine the reference RSS
of the links (Tw) and the length of the background image training period (Tb).

of environmental factors such as e.g. temperature changes on

the battery discharge characteristics [45].

The results of the simulations are in Figure 9. We analyze

the three most accurate RTI methods among the ones taken

into consideration, i.e., OUT+, OUTw, and FLBU . The

method FLBU [12], which continuously measures all the

link-channel pairs of the network, grants a projected lifetime

of approximately 24 days. In Figure 9(a), with ∆Tc = 5
minutes, we progressively increase the value of ∆TN from

1 hour to 24 hours. In (b), with ∆TN = 2 hours, we

progressively increase the value of ∆Tc from 1 minute to

15 minutes. Each time, we perform 1000 simulations. The

solid lines in the plots represent the median projected system

lifetime of the simulations, the two edges the 25th and 75th

percentiles of the distribution. OUT+ extends the projected

lifetime of the system to 104 days when ∆TN = 1 and 139
days when ∆TN = 24 hours, further enhancing the projected

lifetime of OUTw (58 days and 64 days, respectively). The

projected system lifetime is influenced also by the length of the

evaluation period ∆Tc, as shown in Figure 9(b). The impact of

this parameter is more evident with OUT+, which at run-time

uses a smaller percentage of link-channel pairs than OUTw.

Setting ∆Tc to a small value would further extend the lifetime

of the system. A larger ∆Tc grants a more reliable evaluation

of the characteristics (i.e., fade level and sensitivity to the

environmental noise) of the link-channel pairs, which severely

affects the detection and localization performance of the RTI

system.

Finally, in Figure 10 we show the RMSE (both when the

person is moving and stationary) obtained by processing the

RSS measurements collected during the deployment of the

system with the outdoor RTI method OUT+, when the value

of ∆TN is progressively increased from 15 minutes to 6
hours (∆Tc = 5 minutes). The results demonstrate that the

localization accuracy can be further increased by triggering

more frequently the procedure of evaluation and selection of

the link-channel pairs to be used for RTI. We observe that the

reduction in the localization error is limited to approximately

0.6 m, while the reduction of the lifetime of the system lifetime

would approximately be 30 days.

In this section, we did not assess the effect of the position of

the RF sensors on the lifetime of the system. Different sensor

positions during the deployment phase would have modified

the fade level of the link-channel pairs. As a consequence,

the selection procedure described in Section III-B would have

generated a different set of link-channel pairs to be considered

for RTI, altering the energy consumption of the nodes. The

work in [44] showed that even small-scale changes (i.e.,

in the order of the wavelength) in the position of the RF

sensors have a significant impact on the performance of an

RTI system. In that work different methods to select sub-

optimal positions have been introduced for the purpose of

optimizing the overall fade level of the network, thus the

localization accuracy. Similar deployment schemes could be

applied also in an outdoor scenario. The work in [46] proposed

a stochastic model of human-induced fading to derive closed-

form fundamental limits to the localization accuracy of a RF

sensor network. We leave this aspect to future works.

VII. CONCLUSION

In this paper, we present and evaluate a novel RTI method

for accurately detecting and tracking people in nonstationary

outdoor environments. An RTI system is composed of static

RF sensors, communicating on multiple frequency channels in

the 2.4 GHz ISM band, which continuously measure the RSS

of the links of the mesh network to estimate the change in the

electromagnetic field of the monitored area introduced by the

presence and movements of people. The outdoor RTI method

described in this work makes the system robust to the time-

varying environmental noise typical of harsh outdoor environ-

ments, i.e., the variation in RSS introduced by environmental

factors such as wind-driven foliage, rainfalls, or snow. In

addition, the proposed method improves the energy efficiency

of the system by selecting only link-channel pairs which are



1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2015.2504965, IEEE
Transactions on Mobile Computing

13

5 10 15 20
20

40

60

80

100

120

140

∆T
N

 [hours]

S
ys

te
m

 li
fe

tim
e 

[d
ay

s]

 

 

FLBU

OUT+

OUTw

(a)

2 4 6 8 10 12 14
20

40

60

80

100

120

140

∆T
c
 [minutes]

S
ys

te
m

 li
fe

tim
e 

[d
ay

s]

 

 

FLBU

OUT+

OUTw

(b)

Fig. 9. Results of simulations of the projected lifetime of the system with OUT+, OUTw , and FLBU . In (a), with ∆Tc = 5 minutes, ∆TN is progressively
increased from 1 hour to 24 hours. In (b), with ∆TN = 2 hours, ∆Tc is progressively increased from 1 minute to 15 minutes. Each time, 1000 simulations
are performed. We assume that the nodes are equipped with D-type alkaline batteries having an 18 Ah capacity. The solid lines in the plots represent the
median projected system lifetime of the simulations, the two edges the 25th and 75th percentiles of the distribution.
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(red line), obtained processing the RSS measurements collected during the
deployment of the RTI system when ∆TN is progressively increased from
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reliable indicators of the presence of a person on the link line.

To experimentally verify the performance of the outdoor RTI

method, we deploy a RTI system in a large forested area.

The results demonstrate that the novel outdoor RTI method

minimizes the false alarm rate and reduces significantly the

localization error (from 20% to 46%) and energy consumption

(from 62% to 87%) compared to already existing indoor RTI

methods, which we suitably adapted to the considered outdoor

scenario to grant a fair comparison.

In future works, we will improve the energy efficiency of the

RTI system by applying area coverage criteria to further reduce

the set of selected link-channel pairs and by adaptively tuning

the sampling frequency of the system based on the observed

environmental conditions. In addition, we will investigate the

robustness to environmental noise of other frequency bands

(e.g., 433 MHz and 900 MHz).
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