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Abstract—Just-In-Time (JIT) classifiers operate in evolving
environments by classifying instances and reacting to concept
drift. In stationary conditions, a JIT classifier improves its accu-
racy over time by exploiting additional supervised information
coming from the field. Differently, in nonstationary conditions,
the classifier reacts as soon as concept drift is detected: the
current classification setup is discarded and a suitable one
activated to keep the accuracy high.

We present a novel generation of JIT classifiers able to deal
with recurrent concept drift by means of a practical formalization
of the concept representation and the definition of a set of
operators working on such representations. The concept-drift
detection activity, which is crucial to promptly react to changes
exactly when needed, has been advanced by considering change-
detection tests monitoring both inputs and classes distributions.

Index Terms—Concept Drift, Adaptive Classifiers, Just-in-time
Classifiers, Recurrent Concepts.

I. INTRODUCTION

MOST machine learning techniques assume, either ex-
plicitly or implicitly, that the process generating the

data is stationary. This assumption guarantees that the model
learnt during the initial training phase remains valid over
time and that its performance is in line with our expec-
tations. Unfortunately, this assumption does not truly hold
in the real world representing, in many cases, a simplistic
approximation of the reality. For instance, it is clear that
transient or permanent faults affecting the electronics of an
embedded system as well as software bugs, influence the
performance of algorithms introducing, de facto, nonstationary
phenomena. Similarly, thermal drift or ageing effects may
affect the transduction mechanism of sensors, the conditioning
electronics, or the ADC, hence degrading (slowly) the quality
of acquired measurements: again the resulting effect is a
concept drift affecting the data-generating process. At the same
time, we might consider changes influencing features extracted
from data instead of inspecting changes at the data level. The
parameters of a linear dynamic model approximating the pro-
cess are an example of features; here, time-variance changes
the probability density function (pdf) in the parameter space.
Whatever the cause is, in time-varying situations the statistical
distribution of data changes over time, hence impairing the
validity of the stationary hypothesis.

Classifiers designed to address concept drift cope with
situations where the pdf may change over time. When concept
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drift occurs, the accuracy of the classifier drops since the
current classification setup becomes obsolete and must be
substituted with an up-to-date one. The problem of classifi-
cation in environments affected by concept drift can be found
in many application domains. Relevant applications are fraud
detection in electronic transactions, health care systems, sensor
networks, intelligent vehicles and recommender systems to
name the few [1]. In addition, dealing with concept drift
may improve classification systems in applications involving
information filtering (such as email and spam filtering), me-
teorology statistics, Internet event logs analysis, stock mar-
ket transaction forecasting, and context-aware and ubiquitous
computing.

The JIT classifier, which has been originally presented
in [2], [3], natively implements the detection/adaptation
paradigm. As long as the world is stationary, a JIT clas-
sifier exploits any supervised information coming from the
field to improve the classification accuracy. As a distinctive
characteristic, any consistent classifier employed in a JIT
framework tends towards the Bayes one, even though the
process undergoes an abrupt concept drift.

JIT classifiers monitor the occurrence of concept drift by
means of Change-Detection Tests (CDTs) that, sequentially,
assess the stationarity of the data-generating process. So far,
the proposed JIT classifiers employ CDTs for monitoring the
distribution of input data [2], [3], [4], disregarding the infor-
mation associated with supervised labels. However, monitoring
the input data does not allow us for detecting concept drift
modifying the way labels are assigned. Furthermore, existing
JIT classifiers do not take advantage of recurrent concepts.

This paper advances the works presented in [4] and [5]
by proposing a general formulation of the JIT approach that
introduces an explicit adaptive management of concepts. As
soon as a CDT detects a change (concept drift detection),
a new concept representation is created (concept isolation)
and compared with the stored representations of concepts
(recurrent concept identification). When the representation of
a previously encountered concept is considered equivalent to
the current one, its supervised samples are used to reconfigure
the classifier. As such, the JIT classifier takes advantage of
recurrent concepts, e.g., that may arise when the process
operates in a sequence of working states or undergoes a cyclic
drift.

The original contributions of the paper are:
• a general formulation for JIT classifiers that embodies an

explicit management of concepts;
• a technique for isolating concepts;
• a procedure for identifying recurrent concepts by assess-

ing the equivalence between two concept representations;
• a specific JIT classifier able to detect concept drift affect-

ing both the input data distribution and the classification
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error.
The paper is organized as follows. The analysis of related

works is presented in Section II. Section III formalizes the
classification problem in environments affected by concept
drift. Section IV describes the general methodology for design-
ing classifiers following the JIT approach; Section V details
the proposed JIT classifier. Finally, Section VI presents and
discusses the experimental results.

II. RELATED WORKS

Several classifiers able to deal with evolving and possibly
recurrent environments have been proposed in the literature
[6]–[8]. In the following, we critically describe the most
relevant works from two different points of view: the concept-
drift detection and the ability to identify recurrent concepts.

In the former case, classifiers dealing with evolving environ-
ments can be grouped into two families according to the way
they react to concept drift. Active classifiers [2]–[5], [9]–[21]
rely on triggering mechanisms (e.g., a CDT) to detect when
the classifier is no more representative of the current concept:
an adaptation phase is then activated once a change is detected
to train the classifier on the current concept. On the contrary,
in passive solutions (refer to [6], [7] and references therein),
the classifier undergoes a continuous update every time new
supervised samples are available. Passive classifiers generally
rely on an ensemble of classifiers with adaptation confined in
the update of the weights used in the fusion/aggregation rule
and creation/removal of classifiers composing the ensemble.

[20] suggests an active classifier that monitors nonsta-
tionarity by inspecting variations in the mean value of a
sliding window opened over input data. Differently, [19] takes
decisions by inspecting the normalized Kolmogorov-Smirnov
distance between the cumulative density functions estimated
on the training samples and a window of the most recent ones.

[15]–[18], [21] present triggering mechanisms based on
the classification error. In more detail, [15], [17], [21] detect a
change when the classification error exceeds a fixed threshold
(which is tuned according to the sample standard deviation
of the associated Bernoulli distribution). [18] suggests an ad-
hoc statistical test on the proportion of incorrectly classified
samples to compare two different partitions of supervised cou-
ples. [16] introduces an active classifier for concept drift that
relies on a sequential CDT (the Bernoulli exponential moving
average chart) to assess the stationarity of the classification
error over time.

Both active and passive classifiers can be endowed with
mechanisms to identify and reactivate recurrent concepts. The
pioneering work of [22], which introduced the FLORA 3 and
FLORA 4 algorithms, relies on windowing mechanisms for
adapting to concept drift and identifying potential recurrent
concepts. A concept history is kept and built in [23], which
allows the classifier for creating and reactivating past concepts
when they reoccur. There, recurrent concepts are identified by
measuring the conceptual equivalence obtained by contrasting
the outputs of two classifiers (the historical and the updated
ones) over the most recent observations. Concept drift in [24]
is handled by an instance-selection mechanism that identifies

which observations fit the current concept descriptor. The
classifier also predicts the rate of change and possibly recalls
previously encountered concepts. In [25] a procedure for
building an ensemble of classifiers is presented: classifiers are
selected from the history of all the trained classifiers depending
on their classification accuracy evaluated over the most recent
supervised samples. [26] introduced an effective algorithm
that relies on conceptual vectors, i.e., descriptors extracted
from batches of past supervised data, to build an ensemble
of classifiers. A clustering algorithm, applied to conceptual
vectors, selects the best classifier from the ensemble.

The identification of recurrent concepts has been also ad-
dressed in the literature of context-sensitive learning, where
it is assumed that additional information about the current
context is available (which can be exploited for identifying
concept drift as well as recurrent concepts). The issue of iden-
tifying contextual features within the observations is addressed
in [27], while [1], [28]–[30] focus on how to integrate external
contextual information within an ensemble of classifiers with
the specific purpose of exploiting recurrent concepts. Contex-
tual features are typically exploited at meta-learning level and
are not processed as attributes of observations.

In all above solutions the equivalence between two concepts
is assessed by means of supervised samples, without taking
advantage of unlabeled observations. In contrast, [31], [32]
introduce a two-layered learning scheme that relies on a single
classifier predicting labels at the first layer and a meta classifier
(which is trained to learn the regions of the input domain
where the first layer correctly operates) at the second layer.
After each concept-drift detection, the stored meta-classifiers
are compared pairwise by evaluating their performance on the
most recent unsupervised samples to determine whether the
new concept has been already encountered in the past or not.
Recently, [33] introduced a classifier able to identify recurrent
concepts by exploiting unsupervised samples. However, this
solution is classifier-dependent, as it is tailored to an incre-
mental decision tree. Still, these classifiers neither analyze the
distribution of unlabeled observations to detect concept drift
nor identify recurrent concepts.

Monitoring sequentially the stationarity of the input pdf is
one of the peculiarities of the first JIT classifiers [3], [14].
More specifically, JIT classifiers applied the CI-CUSUM CDT
[2], whereas the most recent versions have enforced the ICI-
based one [4], [11] as the test provides improved detection
ability in rapidly evolving environments. Unfortunately, a
CDT on the input cannot detect any concept drift that leaves
the input distribution unaltered, even when this determines a
dramatic fall in the classifiers accuracy (e.g., the swap of the
classes). Furthermore, it is difficult to apply a CDT to inputs
containing qualitative components. To solve these problems,
[5] introduced a JIT classifier able to detect concept drift
affecting the accuracy of classifiers.

Here, we propose a JIT classifier that detects concept drift
by means of two CDTs monitoring the distribution of input
data and the classification error. For the first time in the
literature we use both the input data and the supervised couples
to detect concept drift and identify and compare concepts.
This guarantees a very high adaptiveness to concept drift
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thanks to an improved detection ability. At the same time
the method reduces false positive detections and simplifies the
configuration phase in the JIT classifier. Differently from the
approaches present in the literature that tailor the concept-
drift detection ability to a specific classifier, the proposed
solution is very flexible and any classification scheme can
be employed within the JIT framework. As an example, in
the experimental section, we customize the JIT approach to
integrate k-nearest neighbor, naı̈ve Bayes and support vector
machine as classifiers.

III. PROBLEM FORMULATION

Let us consider a classification problem where sequential
i.i.d. couples (xt, yt) are generated according to an unknown
pdf. In particular, let xt ∈ Rd be the input at time t, generated
by the unknown process X and yt be its class label, belonging
to a finite set Λ. The pdf of inputs at time t can be expressed
as

p(x|t) =
∑
y∈Λ

p(y|t)p(x|y, t), such that
∑
y∈Λ

p(y|t) = 1,

(1)
where p(y|t) > 0, is the probability of receiving a sample of
class y ∈ Λ, while p(x|y, t) is the class conditional distribution
at time t. Both p(y|t) and p(x|y, t) are unknown and may
change following a concept drift. The training sequence is
composed of the first T0 observations (either input data or
supervised couples) assumed to be generated in stationary con-
ditions, i.e., p(y|t) and p(x|y, t) do not change for t ∈ [0, T0]
and ∀y ∈ Λ. Beside stationarity, we assume that the training
sequence contains also supervised pairs, i.e., the true label yt
is made available for some xt, t ∈ [0, T0]. No assumptions
are made on how often supervised pairs (xt, yt) are provided
during the operational life (t > T0), as these could be received
following a regular time-pattern scheme (e.g., one supervised
sample out of m) or asynchronously.

IV. JIT CLASSIFIERS FOR RECURRENT CONCEPTS:
THE GENERAL FORMULATION

The key elements composing a JIT classifier are the set
of concept representations C = {C1, . . . , CN} and the set of
operators {U , Υ,D, E ,K} designed to handle such represen-
tations.

The i-th concept representation is defined as the triplet
Ci =

(
Zi, Fi, Di

)
where Zi is a sequence of supervised

couples, Fi is a sequence of features characterizing the i-
th concept and used to assess the equivalence between two
concept representations, and Di is a sequence of features
used to inspect changes in the i-th concept. Not rarely, Di

also contains features Fi. Examples of Di are the cumulative
statistics used by CUSUM-based CDTs [34]; examples of
Fi are the sample statistics derived from non-overlapping
subsequences of observations.

The operators are defined as follows:
• the update operator U(Ci, R)→ Ci. Operator U receives

concept Ci and R, a sequence of recent supervised
couples (or inputs). U modifies the concept representation

1- Build concept C0 =
(
Z0, F0, D0

)
from the initial

training sequence;
2- Zrec = ∅ and i = 0;
3- while (xt is available) do
4- U(Ci, {xt})→ Ci;
5- if (yt is available) then
6- U(Ci, {(xt, yt)})→ Ci;

end
7- if (D(Ci) = 1) then
8- i = i+ 1;
9- Υ (Ci−1)→ (Ck, Cl);

10- Ci = Cl;
11- Ci−1 = Ck;
12- Zrec =

⋃
E(Ci,Cj)=1

0≤j<i

Zj ;

end
13- if (yt is not available) then
14- ŷt = K(Zi ∪ Zrec, xt).

end
end

Algorithm 1: General formulation of the JIT classifier for
recurrent concepts.

Ci by appending recent supervised samples from R to Zi
and features extracted from R to Fi.

• the split operator Υ (Ci) → (Cj , Ck). The operator Υ
divides a concept representation Ci into two disjoint
concept representations Cj and Ck. Elements that cannot
be safely associated either to Cj or Ck are discarded.

• the concept-drift detection operator D(Ci) → {0, 1}.
D sequentially assesses the stationarity of concept Ci
by monitoring features in Di. When D(Ci) = 0 all
observations yielding Ci are considered from the same
concept, i.e., “no concept drift” has occurred. When
D(Ci) = 1, “concept drift has been detected”.

• the equivalence operator E(Ci, Cj) → {0, 1}. E checks
if Ci and Cj are equivalent: E(Ci, Cj) = 1 means that
Ci and Cj are two representations coming from the
same concept. E(Ci, Cj) = 0 means that Ci and Cj are
representations of different concepts.

• the classifier K(Z, xt) → Λ. K is configured on Z and
assigns label ŷt ∈ Λ to input sample xt.

A general description of the JIT classifier is presented in
Algorithm 1. The JIT classifier requires an initial training
sequence to build C0 =

(
Z0, F0, D0

)
, a representation of the

initial stationary concept (line 1). The initially-empty set Zrec
stores supervised couples coming from previous occurrences
of the current concept.

During the operational life, the JIT classifier receives input
xt or supervised couples (xt, yt) (line 3) that are used to
update Ci –the representation of the current concept– by
means of the update operator U . This operator extracts features
from inputs and appends them to Fi (line 4) and inserts
supervised couples into Zi (line 6).

The concept-drift detection operator D (line 7) monitors
the possible occurrence of concept drift by computing and
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inspecting features stored in Di. As soon as a concept drift
is detected, a new representation of the concept is created
from the most recent inputs and supervised couples (lines 8
- 11). The split operator Υ then separates supervised samples
and features belonging to the new concept Ci from those
belonging to a previous concept Ci−1. Supervised couples and
features that cannot be safely associated either to Ci or Ci−1

are discarded.
After each concept-drift detection, the JIT classifier checks

if the actual concept is recurrent, i.e., if the concept drift
has moved the process into an already encountered state. To
carry out this operation, the concept representation Ci is pair-
wise compared with each Cj in C = {Cj , 0 ≤ j < i}
by using the equivalence operator E . When Ci and Cj are
considered equivalent (i.e., E(Ci, Cj) = 1), the supervised
samples Zj of Cj are inserted into Zrec, the set collecting the
supervised couples of concept representations coherent with
Ci (line 12). After each concept-drift detection, the operator
D is reconfigured to detect further concept drift that might
affect the new state of X .

Finally, the classifier K, which exploits both fresh super-
vised couples in Zi and supervised couples from recurrent
concepts stored in Zrec, assigns label ŷt to input xt (line 14).

V. JIT CLASSIFIERS FOR RECURRENT CONCEPTS:
A REALIZATION

The section instances a JIT classifier for recurrent concept
satisfying the general framework of Algorithm 1. In the
following the i-th concept representation Ci is defined as
• Zi, the set of available supervised couples.
• Fi, the features characterizing the i-th concept are ex-

tracted from non-overlapping subsequences QX contain-
ing νX observations (no supervised labels are here re-
quested). These features represent condensed information
about the data-generating process and, together with
supervised samples, are essential to isolate and identify
recurrent concepts. The first feature in Fi is the sample
mean M , computed from the s-th subsequence

M(s) =
1

νX

νXs∑
t=(s−1)νX+1

xt; (2)

the second feature is a power-law transformation of the
sample variance, i.e.,

V (s) =

(
S(s)

νX − 1

)h0

, being (3)

S(s) =

νXs∑
t=(s−1)νX+1

(xt −M(s))2.

This power-law transform yields values of V approxima-
tively Gaussian distributed; its exponent h0 is computed
as

h0 = 1− (κ1κ3)/3κ2
2,

where κi is the i-th cumulant of the distribution of
the sample variance. In practice, these cumulants are
computed from the values of S on the training sequence

(refer to [35] and [4] for additional details). The features
pair (M,V ) provides a second-order approximation of
the input distribution: for this reason the proposed con-
cept representation encompasses them and the split Υ
and equivalence E operators take them into account to
partition and compare concept representations.

• Di, the features used for detecting concept drift by means
of CDTs. Features Di =

(
Fi, Pi

)
include Fi since we

adopt the ICI-based CDT [4] that detects concept drift
by monitoring nonstationarities in M(s) and V (s). The
sequence Pi contains the estimates of the classification
error computed over non-overlapping subsequences Qεs,
each containing νε supervised samples in Zi, i.e.,

Pi =
{ 1

νε

∑
t∈Qε

εt, Qε ⊂ Zi
}
, (4)

where the element-wise error εt is defined as

εt =

{
0, if yt = K0(xt)

1, otherwise
; (5)

K0 is a classifier used specifically for change-detection
purposes and K0(xt) is the label assigned to xt. Nonsta-
tionarities in Pi are detected by the CDT proposed in [5].
Thus, the proposed JIT classifier detects concept drift as
a violation in stationarity of either Fi or Pi.

A. Updating a Concept: the Update Operator U
U updates the current representation Ci by inserting a

supervised couple or extracting features from a sequence of
input data. In particular, the update operator applied to a
supervised pair {(xt, yt)} is defined as

Ci = U(Ci, {(xt, yt)}) =

{
Zi = Zi ∪ (xt, yt)

Fi = Fi
, (6)

while the update operator applied to a sequence of νX input
data {xt}sνX(s−1)νX+1 is

Ci = U(Ci, {xt}sνX(s−1)νX+1) =

{
Zi = Zi

Fi = Fi ∪ [M(s);V (s)]
,

(7)
where [M(s);V (s)] is the column vector obtained by stacking
the respective M(s) and V (s) instances.

B. Detecting Concept Drift: the Concept Drift Operator D
The concept-drift detection operator D consists in two

CDTs exploiting the intersection of confidence intervals (ICI)
rule [36], [37] as a core technique for detecting changes in
stationarity. ICI-based CDTs [4] are sequential CDTs meant
for scalar data streams. At first, inputs are partitioned into non-
overlapping subsequences where features are extracted, then,
the ICI-rule assesses, on-line and sequentially, the stationarity
of the expected value of each feature. Remarkably, these CDTs
come with a refinement procedure (Algorithm 3 in [4]) that
isolates, after each detection, observations (both input data and
supervised couples) that have been generated by the process
in the new state; this information can be used to reconfigure
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the CDT after each concept-drift detection. This characteristic,
coupled with the reduced computational complexity, makes the
ICI-based CDT the ideal candidate to be employed within a
JIT framework.

The concept drift operator D is defined as

D(Ci) = (CDTX(Fi)||CDTε(Pi)) ∈ {0, 1}, (8)

where || is the OR-logical operator; CDTX(Fi) = 1 and
CDTε(Pi) = 1 imply that a concept drift has been detected
in the stream of features Fi and in the estimates of the
classification error Pi, respectively. Any new feature value,
as well as any new estimate of the classification error of K0

is included in Di, as these will be used for reconfiguring
the CDTs after a detection. In particular, CDTX monitors the
distribution of input data disregarding possible existing labels,
while CDTε verifies whether the average classification error
in Pi is constant or not. In what follows we detail the CDTX
and CDTε tests.

CDTX: CDTX assesses the stationarity of the process
by inspecting each of the features in Fi for changes. A
concept drift is detected as soon as the ICI-rule identifies
a nonstationarity either in M or V . However, the CDT
structurally introduces false positives, i.e., detections that do
not correspond to concept drift. A hierarchical formulation
of the ICI-based CDT has been designed in [10] to keep
under control the occurrence of false positives. The two-level
architecture consists in CDTX at the lower level and a change-
validation procedure at the upper level which, in addition to
the assessment of the change, provides a confidence level. The
hierarchical CDT exploits Tref,i – a refined estimate of the
change time-instant T ∗i – provided by the refinement proce-
dure. Let T̂i be the time instant in which CDTX determines
a drift in features Fi. The change validation is formulated
as a multivariate hypothesis test based on two sequences of
features: those extracted from the time interval [Tref,i, T̂i],
characterizing the new candidate concept and those extracted
in interval [Tref,i−1, T̂i−1], referring to the previous concept
(i.e., the one in which CDTX was configured). The procedure
is as follows: stack in column vectors the features extracted
in these time intervals1 (each feature representing a row) and
compute their means F i and F i−1 and the pooled sample
covariance matrix. The null hypothesis H0 is formulated as

H0 : “F i − F i−1 = 0”, (9)

where 0 represents the two-dimensional vector of null compo-
nents. Then, an Hotelling T2 test [38] can be executed to reject
the null hypothesis at a predefined confidence level α. When
the null hypothesis is not rejected, the CDTX parameters
are reconfigured from the original state (i.e., features in the
[Tref,i−1, T̂i−1] interval). Otherwise, the change is confirmed.
We consider the change-validation step as a part of the CDT
(Algorithm 2, line 7) and, for this reason, it is not expressively
reported in Algorithm 2. It also has to be mentioned that,
although the presented solution is meant for features coming

1For this comparison the values of V in [Tref,i, T̂i] and [Tref,i−1, T̂i−1]
are computed from an unique value h0 of (3), e.g. that one estimated from
the concept spanning the longest time interval.

from CDTX , an ad-hoc validation procedure can be in princi-
ple implemented for different features.

CDTX is initially configured on a training sequence (gen-
erated in stationary conditions) to estimate h0 in (3), the
expected value, and the confidence interval for each feature.
In order to reliably reconfigure CDTX we require at least MX

subsequences (i.e., νXMX observations) and, whenever the in-
put data received within the [Tref,i, T̂i] interval are not enough,
the reconfiguration of the CDT is postponed (and the JIT
classifier temporarily operates without concept-drift detection
abilities). Further details regarding CDTX and its hierarchical
formulation can be found in [4] and [10], respectively.

CDTε: There are two main reasons justifying the impor-
tance of monitoring the evolution of the classification error
over time. At first, the analysis of the classification error allow
us to detect concept drift affecting p(y|x). Second, monitoring
the classification error allows the JIT classifier to react to
concept drift when it directly influences its accuracy. As such,
it is particularly useful to consider also CDTε to monitor the
classification error, since CDTX cannot perceive changes –
even dramatic– that leave p(x) unchanged, e.g., a classes’
swap. It has to be mentioned that detection performance
of CDTε strongly depends on the availability of supervised
information.

The proposed CDTε consists in a customized ICI-based
CDT for monitoring the stationarity of Pi, defined as in (4).
Then, we need to configure an additional classifier K0, which
is used to compute the average classification error over non-
overlapping subsequences of supervised samples, and it is
never updated.

The element-wise classification error in (5) can be modeled
as a Bernoulli random variable having expectation p0. In
stationary conditions, p0 is constant since K0 is not updated
and, since xt are independent, εts are also independent. The
sum of νε i.i.d. Bernoulli random variables follows a Binomial
distribution B(p0, νε), which can be approximated with a
Gaussian distribution whenever νε is sufficiently large, i.e.,

B(p0, νε) ≈ N
(
p0νε, p0(1− p0)νε

)
. (10)

Thanks to (10) we can apply the ICI-based CDT to Pi, to
check whether the sequence (4) containing the average errors
of K0 over non-overlapping sequences Qε of νε supervised
samples

p̂0 =
1

νε

∑
t∈Qε

εt, (11)

is stationary over time or not.
Similar to CDTX , CDTε is paired with its own change-

validation procedure to reduce the occurrence of false posi-
tives. The validation of any CDTε detection is here formulated
as an inference problem on the proportions of misclassified ob-
servations by K0 on two disjoint validation sets. An univariate
t-test can be defined with the following null hypothesis

H0 : “εi−1 − εi = 0”

being εi−1 and εi the average classification error of
K0 computed on supervised observations provided within
[Tref,i−1, T̂i−1] and [Tref,i, T̂i], respectively. The test statistics
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follow a Gaussian distribution, which can be rejected accord-
ing to a predefined confidence level α (that in principle could
differ from that used for CDTX ).

The configuration of CDTε requires the partitioning of Zi
–the set of supervised samples– into two subsets TSi and
V Si such that TSi ∩ V Si = ∅ and TSi ∪ V Si = Zi. TSi is
used to train K0, while V Si is used to compute the sequence
of classification errors Pi as in (4). The initial configuration
consists in computing confidence intervals using the Gaussian
approximation (10), where p0 is replaced by the average over
Pi. As for CDTX , the configuration of CDTε after each
concept-drift detection relies on Tref estimated by the refine-
ment procedure; similarly, CDTε requires a minimum number
of νεMε supervised couples for training K0 and computing
Pi. Other considerations related to the configuration of CDTX
hold also for CDTε. Further details concerning CDTε can be
found in [5].

It is important to remark that monitoring the classification
error of K (i.e., the classification error measured on the
available supervised couples, as in [15]) would result in a high
false-positive rate for CDTε since K is expected to improve
its accuracy, when supervised samples are made available in
stationary conditions.

C. Concept Isolation: the Split Operator Υ (Ci)

Every time a concept drift is detected, the JIT classifier
builds a representation of the concept Ci by relying on
the split operator Υ . In particular, Ci can be obtained by
considering all supervised samples and features coming from
time interval [Tref,i, T̂i]. Then, also Ci−1 – now referring to
the previous concept – has to be updated by removing features
and supervised couples related to the new concept. Different
solutions for Υ are possible.

For instance, the simplest solution would include in Ci−1

all available supervised samples and features acquired in time
interval [Tref,i−1, Tref,i] (being Tref,i−1 provided by the refine-
ment procedure at the detection T̂i−1). The corresponding split
operator Υ is defined as

Υ (Ci) = (Ci, Ci−1) whereCi =
(
Zi|[Tref,i,T̂i]

, Fi|[Tref,i,T̂i]

)
Ci−1 =

(
Zi|[Tref,i−1,Tref,i), Fi|[Tref,i−1,Tref,i)

) .

where Zi|[t1,t2] and Fi|[t1,t2] collect the supervised couples and
the feature values acquired in the time interval [t1, t2] from
Zi and Fi, respectively. Since Tref,i typically overestimates
T ∗i , Ci−1 might still contain supervised couples and features
generated after the concept drift (and, as such, belonging to
Ci and incoherent with Ci−1).

A different, more conservative, solution would consider
supervised couples and features acquired within the interval
[Tref,i−1, T̂i−1]. In this case, the split operator Υ is defined as

Υ (Ci) = (Ci, Ci−1) whereCi =
(
Zi|[Tref,i,T̂i]

, Fi|[Tref,i,T̂i]

)
Ci−1 =

(
Zi|[Tref,i−1,T̂i−1], Fi|[Tref,i−1,T̂i−1]

) .

Tref,i TT*Tend,i-1 iiTref,i-1 Ti-1

CiCi-1

Fig. 1. Time instants characterizing the isolation of the new concept Ci and
the previous concept Ci−1.

This option guarantees to consider only features and super-
vised couples coming from the previous concept Ci−1, but
discards those features and supervised couples belonging to
interval [T̂i−1, Tref,i] (over-conservative approach).

A preferable solution would require computing Tend,i−1,
which is an estimate of the concept-drift time instant T ∗i
satisfying the conditions Tend,i−1 ≤ T ∗i ≤ Tref,i, and use
Tend,i−1 to bound Ci−1. Thus, the split operator Υ would
become

Υ (Ci) = (Ci, Ci−1) whereCi =
(
Zi|[Tref,i,T̂i]

, Fi|[Tref,i,T̂i]

)
Ci−1 =

(
Zi|[Tref,i−1,Tend,i−1], Fi|[Tref,i−1,Tend,i−1]

) .(12)

This split operator discards features and supervised couples
in [Tend,i−1, Tref,i] as they cannot be safely associated to any
concept. The first CDT detecting a concept drift (either CDTX
or CDTε) is used to compute Tend,i−1. The core idea is to use
the CDT backward, by configuring it on the new concept Ci
and then processing the (corresponding) features in Di in a
reverse time order to detect a deviation from the new encoun-
tered concept. In practice, the CDT is trained on the features
(or the average classification error) in [Tref,i, T̂i] and processes
those between Tref,i and Tref,i−1: the change-point detected by
such CDT is denoted by Tend,i−1 and typically underestimates
T ∗i (considering the forward time). Fig. 1 illustrates how the
estimates Tend,i−1, T̂i and Tref,i, provided by the online CDTs,
the backward CDT and the refinement procedure, respectively,
are typically set along the time-horizon w.r.t. the true concept-
drift time-instant T ∗, and how concepts Ci and Ci−1 are
isolated by the split operator Υ . In our implementation we
use the split operator defined in (12).

D. Identifying Recurrent Concepts: the Equivalence Opera-
tor E

The identification of recurrent concepts consists in an ex-
haustive, pair-wise, comparison of the new concept representa-
tion Ci with each concept representation in C = {Cj , 0 ≤ j <
i} by means of the equivalence operator E . The comparison
between Ci and Cj determines if the two representations
belong to the same concept. Such comparison cannot be
carried out by estimating the underlying pdfs, as in general
this requires a large number of supervised couples. Differently,
we analyze sample moments of the input pdf (by comparing
Fi and Fj) and information derived from the p(y|x) (by
comparing Zi and Zj). The comparison between Fi and Fj is
formulated as an equivalence-test problem, while comparison
of supervised samples consists in analyzing the similarity of
two classifiers trained on Zi and Zj on a common validation
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set. The recurrent concept operator E is defined as:

E(Ci, Cj) =


1 if Fi is equivalent to Fj and

Zi is equivalent to Zj
0 otherwise

.

Comparing Fi and Fj: Equivalence tests are statistical
techniques originally developed to assess if two different
formulations of the same drug are bioequivalent, i.e., they
provide equal therapeutic effects. Bioequivalence is typically
assessed by analyzing univariate biological responses using the
Two One-Sided Tests (TOST) procedure [39], [40]. In TOST,
the null hypothesis corresponds to the non-equivalence of the
analyzed quantities, while the equivalence corresponds to the
alternative hypothesis. It follows that, when the null hypothesis
is rejected, the TOST concludes the equivalence at a given
confidence level α.

When comparing any pair of concept representations Ci and
Cj , we apply two independent TOSTs to determine if the mean
of the κ-th component F

κ

i of Fi is equivalent to the mean of
the κ-th component F

κ

j of Fj , where κ = 1, 2. The null (H0)
and alternative (H1) hypothesis are formulated as

H0 : “
(
F
κ

j − F
κ

i

)
< θL or

(
F
κ

j − F
κ

i

)
> θU , ” (13)

H1 : “θL ≤ F
κ

j − F
κ

i ≤ θU , ”

where θL and θU are the upper and lower bounds for the
equivalence region. Since F

κ

i and F
κ

j follow a Gaussian
distribution, the above test can be performed by using two
one-sided t-tests.

Comparing Zi and Zj: The comparison of features Fi and
Fj disregards the supervised information (stored in Zi and Zj)
and, as such, it may erroneously state the equivalence between
two concepts characterized by the same input distribution,
although having labels ruled by very different data-generating
processes.

To check whether Zi and Zj are generated from the same
pdf we train two classifiers Ki and Kj on two subsets
TSi ⊂ Zi and TSj ⊂ Zj , such that the number of couples
in TSi equals the one in TSj , i.e., #TSi = #TSj , where #
denotes the set cardinality. Classifiers Ki and Kj are estimates
of the distributions determining the labels in Zi and Zj ,
respectively: our approach consists in measuring how different
these distributions are by comparing the outputs of Ki and Kj

on a common validation set. To this purpose, let V Si and V Sj
be the supervised couples of Zi and Zj that are not in TSi
and TSj , respectively, and define the common validation set
V S as the largest between V Si and V Sj . We then compute
the percentage of samples q for which Ki and Kj provide the
same output on V S, i.e.,

q = 1−

∑
V S

δi,j(xt)

#V S
, (14)

where δi,j(xt) is 1 if Ki(xt) = Kj(xt), 0 otherwise. We say
that Zi and Zj are not equivalent when q exceeds threshold τ .
The rationale behind this procedure is similar to that leading
to the measure of conceptual equivalence in [23].

E. Classify Input Samples: Classifier K

Classifier K assigns the label ŷt = K(xt) to each input xt,
by relying on knowledge base that includes Zi (the supervised
couples provided since the last concept-drift detection) and
Zrec (the set of supervised couples belonging to concept
representations that are considered equivalent). The JIT frame-
work is general and different solutions can be obtained by
using linear discriminant analysis, k-nearest neighbor, naı̈ve
Bayes classifier, feedforward neural networks, support vector
machines and any other model both for K and K0.

F. Algorithm

The JIT adaptive classifier for recurrent concepts of Algo-
rithm 2 is detailed in the sequel. Lines 1-8 refer to the training
phase. In stationary conditions (lines 9-22, 41-42), the classi-
fier improves its accuracy over time by exploiting additional
supervised information coming from the field and updates the
current concept representation. Differently, in nonstationary
conditions (lines 23-40), the current classifier is discarded
and a new one configured with supervised pairs coming from
the current concept (lines 24-29) or from coherent previously
encountered concepts (lines 30-40).

In precisely, the training phase of the proposed classifier
(lines 1-8) consists in configuring K, K0 (trained on TS0),
CDTX , and CDTε (configured on P0 computed on V S0, where
Z0 = TS0 ∪ V S0). Each of these elements requires a different
amount of samples to be configured: for sake of simplicity, in
the following, we assume that the initial training sequence
contains enough observations (both supervised and not) to
configure all of them. However, in circumstances where a
suitable training sequence is not available, it is possible to
postpone the activation of the CDTs until enough samples
for the configuration become available. It is important to
remark that K0 is never updated with additional supervised
information coming from the field and is retrained only when
a concept drift is detected (lines 32-34).

During the operational life (line 9), the classifier receives
inputs xt from the data-generating process, and Ci is updated
according to the U operator described in Section V-A (lines 12,
20). The classifier K is promptly retrained as soon as a new
couple (xt, yt) is made available (line 13). When νε supervised
couples have been acquired (line 15), CDTε is executed.
Similarly, when a sequence of νX observations (disregarding
their labels) has been acquired (line 19), the features M and V
are computed as in (2) and (3), appended to Fi (line 20), and
CDTX is then executed (line 21). The combination of CDTX
and CDTε according to (8) yields the D operator (line 23)
described in Section V-B. The buffer sequence QX is used
to temporarily store input data for feature extraction, while
Qε temporarily stores the supervised couples to compute the
estimates of classification error of K0.

When either CDTX or CDTε detects a change, the corre-
sponding refinement procedure is executed yielding Tref (line
25), and the new concept is isolated (lines 26, 27) by means
of the split operator Υ (12). After the change, all obsolete
information is removed from the knowledge base of K (line
28), which is then trained by using only those supervised
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1- Acquire the initial training sequence OT0 ;
2- Extract F0 from OT0 and configure CDTX ;
3- Build Z0 as the set of supervised couples in OT0

;
4- Partition Z0 into TS0 and V S0;
5- Train K on Z0 and K0 on TS0;
6- Compute P0 as in (4) and configure CDTε;
7- D0 =

(
F0, P0

)
and C0 =

(
Z0, F0, D0

)
;

8- i = 0, QX = ∅, Qε = ∅;
9- while (xt is available) do

10- QX = QX ∪ {xt};
11- if (yt is available) then
12- Zi = Zi ∪ {(xt, yt)};
13- Update K with (xt, yt);
14- Qε = Qε ∪ {(xt, yt)};
15- if (#Qε = νε) then
16- p̂0 = 1

νε

∑
Qε

(|K0(xt)− yt|) as in (11) and
append it to Pi;

17- rε= CDTε(Pi);
18- Qε = ∅;

end
end

19- if (#QX = νX ) then
20- Compute new feature value and insert in Fi;
21- rX= CDTX(Fi);
22- QX = ∅;

end
23- if ((rX = 1)||(rε = 1)) then
24- i = i+ 1;
25- Estimate Tref,i with the refinement proc. [4];
26- Estimate Tend,i−1 with CDTX (or CDTε)

configured on Ci operating backward on Di;
27- Isolate Ci and Ci−1 as described in (12);
28- Configure K from Zi;
29- reconfigure = 1;

end
30- if (reconfigure = 1 and #Fi ≥MX and #Pi ≥Mε)

then
31- Configure CDTX on Fi;
32- Partition Zi into TSi and V Si;
33- Train K0 on TSi;
34- Compute Pi as in (4) and configure CDTε;
35- Zrec = ∅;
36- for (j = 0 ; j < i ; j++) do
37- if (E(Ci, Cj) = 1) then
38- Zrec = Zrec ∪ Zj ;

end
end

39- train K on Zi ∪ Zrec;
40- reconfigure = 0;

end
41- if (yt is not provided) then
42- Assign label ŷt = K(xt) to xt.

end
end

Algorithm 2: The proposed JIT classifier for recurrent
concepts.

couples belonging to Zi. In contrast, the CDTs configuration
and the procedure for identifying recurrent concepts typically
require a minimum number of samples (i.e., #Fi > MX

and #Pi > Mε). For this reason, the reconfiguration is
scheduled (line 29) and postponed until enough samples (either
supervised or not) are made available (line 30). This induces a
latency in the JIT classifier that is temporarily forced to operate
without any CDT to monitor concept drift (thus operating
without D). Therefore, no concept drift can be detected during
such a latency period, although the classifier K (configured on
the most recent samples) assigns labels to inputs (line 42) and
is regularly updated at each supervised couple (line 13); Ci is
also regularly updated (lines 12 and 20). As soon as enough
features and supervised samples are available, the CDTs are
reconfigured to detect a further concept drift; in particular,
CDTX is configured on Fi (line 31), K0 is trained on TSi
(line 33) and the average classification error Pi is computed
over V Si. CDTε is then configured from Pi (line 34).

Afterwards (lines 36 - 38), Ci is compared with all the
concept representations stored by the JIT classifier in C =
{Cj , 0 ≤ j < i} by means of the equivalence operator
E described in Section V-D. This procedure allows the JIT
classifier to take advantage of recurrent concepts, since K is
trained again by using supervised couples belonging to Ci and
all concept representations equivalent to Ci (lines 39 - line 40).
Finally, when xt is not supervised (line 41), it is classified by
K (line 42).

We emphasize that the need to store feature values Fi and
supervised samples Zi in concepts Ci could make the use
of the proposed JIT classifier critical on potentially-infinite
datastreams. To address this issue we could consider different
solutions. First, we could impose a bound on the number of
supervised samples stored in Zi. Second, pruning techniques
on the supervised samples can be considered (e.g., condensing
and editing techniques of the knowledge base). Third, an
oblivion coefficient could be considered to implicitly remove
oldest occurrences of concepts.

VI. EXPERIMENTS

To test the performance of the JIT classifier provided in
Algorithm 2 we considered synthetic datasets (both scalar
and multivariate) and a real world application characterized
by high-dimensional data. We consider the following base
classifiers:

• a k-Nearest Neighborhood (k-NN) classifier where k is
set as in [3].

• a Naı̈ve Bayes (NB) classifier based on Gaussian distri-
butions.

• a Support Vector Machine (SVM) classifier.

The above classification cores were then inserted into different
adaptive classification frameworks for comparison:

• the proposed JIT classifier of Algorithm 2 (green dashed
line with square marker).

• the JIT classifier of Algorithm 2 without the recurrent
concept management ability (blue solid line with triangle
down marker).
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• A classifier U , trained on all available data every time
a new supervised couple is provided (dotted black line).
This classifier guarantees the best performance in station-
ary conditions.

• A short memory classifier W , trained on a sliding window
open over the latest 40 supervised samples (solid red
line with circle marker). This passive classifier naturally
adapts to concept drift.

• An ensemble E that combines the proposed JIT classifier
with W by using the following selection rule: the label
is assigned by the classifier that guarantees the highest
accuracy over the last 40 supervised couples (dashed-
dotted purple line with triangle up marker).

All the implementations of JIT classifiers use the same family
of classifiers for both K and K0.

Figures of Merit: The classification accuracy on unsuper-
vised samples is the main figure of merit used to assess
the performance of the considered adaptive classifiers (in
a controlled environment we know which label should be
associated to each input). Plots in Fig. 2 and 3 show, in each
time instant, the percentage of misclassified samples in 2000
runs, averaged over a sliding window of 40 samples. The
average classification error over the entire dataset is reported in
Table I that also shows the performance in terms of precision
and recall of the equivalence operator, computed as

precision =
tp

tp+ fp
and recall =

tp

tp+ fn
, (15)

being:
tp (true positives): number of pairs (Ci, Cj) referring

to the same concept and yielding E(Ci, Cj) = 1;
fp (false positives): number of pairs (Ci, Cj) referring

to different concepts but yielding E(Ci, Cj) = 1;
fn (true negative): number of pairs (Ci, Cj) referring to

the same concept and yielding E(Ci, Cj) = 0.
In the above figures of merit we consider only pairs (Ci, Cj)
such that both Ci and Cj are entirely included within their
respective concept (i.e., no concept drift within each concept
representation). Note that precision and recall can be com-
puted also when the dataset does not contain recurrent con-
cepts, since descriptors within the same concept are equivalent.

A. Testbeds Description

In the following classification problems a two-classes’
output is considered (Λ = {ω1, ω2}), with supervised cou-
ples provided at regular time instants. We generate synthetic
datasets with classes having same probability and we provide
a supervised sample out of m = 5 observations. The initial
training sequence is composed of T0 = 400 observations (80
supervised samples). In the real world dataset we kept the
settings of [26]: the supervised label is provided once the cor-
responding observation has been classified; the classification
error is computed at each sample. Here, the initial training
sequence is composed of T0 = 50 (supervised) observations.

Synthetic Dataset, the SCALAR Testbed: Each dataset is
composed of N = 10000 scalar observations while concepts
are ruled by Gaussian pdfs whose parameters are reported in

Table II. In the following, we consider situations where both
concept drift affect p(y|x) and the input distribution or the
p(y|x) only:
• SCALAR 1: an abrupt concept drift affects both classes;

at time t = 5000 the concept drifts from C1 to C2.
• SCALAR 2: a sequence of recurrent abrupt concept drift

that affects both the input distribution and p(y|x). The
concept alternates between C1 and C2 every 2000 sam-
ples (recurrent concepts).

• SCALAR 2A: same as SCALAR 2 but the concept drift is
less evident since the concept alternates between C1 and
C3.

• SCALAR 3: a sequence of recurrent abrupt concept drift
that affects only p(y|x). Every 2000 samples the concept
alternates between C1 and C4 (classes’ swap).

• SCALAR 3A: a sequence of classes’ swap similar to
SCALAR 3 alternating between C5 and C6. Classification
and detection of classes’ swap are here more challenging
problems compared with those in SCALAR 3.

• SCALAR 4: a sequence of abrupt concept drift affecting
both classes. An offset of +2 is added to each class
mean every 2000 samples (the initial concept is C1). Each
concept drift affects both the input distribution and p(y|x)
(no recurrent concepts).

• SCALAR 4A: similar to SCALAR 4. Here the concept
drift is less evident since the offset added to each class
mean is +1.

TABLE II
CONSIDERED CONCEPTS

Concept p(x|ω1) p(x|ω2)
C1 N (0, 4) N (2.5, 4)
C2 N (2, 4) N (4.5, 4)
C3 N (1, 4) N (3.5, 4)
C4 N (2.5, 4) N (0, 4)
C5 N (0, 4) N (2, 4)
C6 N (2, 4) N (0, 4)

Synthetic Datasets, MULTIVARIATE Testbed: These
datasets model classification problems where the concept drift
affects only p(y|x) and leaves unaltered the input distribution.
In particular, we consider the following datasets:
• CHECKERBOARD 1: each data sequence is composed of

10000 observations uniformly distributed in the [0, 1] ×
[0, 1] domain; the classification function is ruled by a
checkerboard in [0, 1]× [0, 1] containing 4 squares of side
0.5. The concept drift affects the classification function
by rotating the checkerboard of {0, π/6, π/3, π/2, 4/3π}
every 2000 samples (no recurrent concepts).

• CHECKERBOARD 2: similar to CHECKERBOARD 1
with the five concepts alternating between 0 and π/6
(recurrent concepts).

• CHECKERBOARD 3: similar to CHECKERBOARD 1,
but each sequence is composed of 20000 observations and
the rotations of {0, π/3, 2/3π, π, 4/3π, 5/3π, 2π} occur
at regular time intervals (recurrent concepts).

• MULTIVARIATE GAUSSIAN: each class is drawn from
a two-variate Gaussian distribution. Class ω1 is char-
acterized by mean [0, 0] and covariance matrix I2 (the
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TABLE I
AVERAGE CLASSIFICATION ERROR (%) AND RECURRENT CONCEPTS IDENTIFICATION PERFORMANCE.

Experiment Base JIT Ensemble JIT w/o Short Continuous Precision Recall
classifier recurrent Memory (W ) Update (U ) Recurrent Recurrent

SCALAR 1 k-NN 27.75 28.44 27.76 30.87 29.64 1 0.530
NB 27.02 27.32 27.03 28.00 29.05 1 0.840

SCALAR 2 k-NN 28.84 29.32 28.93 31.07 29.62 1 0.537
NB 27.62 27.75 27.67 28.21 29.06 1 0.870

SCALAR 2A k-NN 28.47 29.04 28.54 30.90 27.82 1 0.543
NB 27.29 27.52 27.33 28.02 27.33 1 0.864

SCALAR 3 k-NN 38.30 31.66 38.24 32.46 47.08 1 0.510
NB 35.48 29.69 35.44 29.79 46.46 1 0.833

SCALAR 3A k-NN 43.63 36.53 43.50 36.99 47.76 1 0.255
NB 40.73 34.03 40.67 34.19 47.20 1 0.592

SCALAR 4 k-NN 28.95 29.40 28.91 31.07 37.93 0.259 0.504
NB 27.71 27.81 27.66 28.20 37.75 0.407 0.899

SCALAR 4A k-NN 28.54 29.10 28.50 30.89 31.52 0.062 0.452
NB 27.38 27.59 27.32 28.01 31.07 0.072 0.818

CHECKERBOARD 1 k-NN 21.45 17.06 21.41 21.77 44.58 0.422 0.724
CHECKERBOARD 2 k-NN 19.92 14.32 20.37 18.93 24.48 1 0.799
CHECKERBOARD 3 k-NN 18.60 15.60 18.83 20.48 25.67 0.977 0.833
MULTIVARIATE k-NN 23.60 21.74 23.61 25.00 47.85 1 0.947
GAUSSIAN NB 21.52 19.97 21.52 21.08 49.03 1 1
SINE 2 k-NN 14.33 11.09 15.50 15.59 44.07 1 0.987
SINE 2A k-NN 19.49 12.80 20.55 18.10 44.43 1 0.932
SINE IRREL 2 k-NN 23.76 18.37 24.79 24.19 45.49 1 0.793
SINE IRREL 2A k-NN 31.23 22.05 31.64 27.33 45.83 1 0.415

EMAIL LIST k-NN 42.00 36.65 42.00 36.55 37.03 - 0
SVM 22.34 17.31 22.90 22.62 42.83 1 0.250

2× 2 identity matrix), class ω2 is characterized by mean
[2, 0] and covariance matrix 4I2. The concept drift occurs
at t = 5000 and induces a classes’ swap. Each data
sequence is composed of 10000 observations.

• SINE 2: inputs (x1, x2) are uniformly distributed over
the [0, 1]× [0, 1] domain and the classification function is
yt = I(x2 > 0.5 + 0.3 sin(3πx1)), being I the indicator
function. Concept drift occurs every 2000 samples, pro-
ducing a classes’ swap. Each data sequence is composed
of 10000 observations.

• SINE 2A: the same as SINE 2 but 10% of supervised
samples are provided with the wrong label (class noise).

• SINE IRREL 2: the same as SINE 2 but observations
are uniformly distributed in [0, 1]4, with two attributes
that do not influence the classification function (irrelevant
attributes).

• SINE IRREL 2A: the same as SINE IRREL 2 with 10%
of class noise added to supervised samples.

Datasets MULTIVARIATE GAUSSIAN was taken from [15],
as well as the SINE 2, SINE IRREL 2, which, however,
have been periodically repeated to yield recurrent concepts.
Datasets SINE 2A and SINE IRREL 2A present the same
class noise as the moving hyperplanes dataset of [41]. Datasets
CHECKERBOARD 1, 2 and 3 take inspiration from [7].

Real World Dataset, the Emailing list: We considered the
EMAIL LIST real-world dataset presented in [26], address-
ing a spam email filter application. The dataset contains a
sequence of email messages, each related to a specific topic.
The task consists in classifying emails (as a virtual user would
do according to their topic) either as interesting or junk.

Concept drift is simulated as a sudden change of the user
behavior who labels as interesting/junk messages from topics

that previously were considered as junk/interesting. Concept
drift is introduced every 300 samples; the dataset contains
a sequence of recurrent classes’ swap. Email messages are
provided in the Boolean bag-of-words representation, each
containing 913 Boolean attributes; the whole dataset consists
on 1500 supervised messages.

Configuration of the JIT Classifier: Both CDTX and CDTε
are configured as described in Section V, with νX and νε
set to 20. To reconfigure CDTX and CDTε we require a
minimum of MX = 4 feature values (corresponding to
νXMX = 80 input data) and Mε = 4 estimates of p̂0

(corresponding to νεMε = 80 supervised couples). During the
initial configuration and after each concept-drift detection, the
classifier K0 is trained on 40 supervised samples, while the
classification error computed on the remaining 40 samples is
used to configure CDTε. In case of scalar datasets the JIT
classifier relies on both CDTX and CDTε, while on datasets
characterized by multivariate observations only CDTε is used.
Similarly, in the case of multivariate datasets the procedure
for identifying recurrent concepts consists only in the analysis
of supervised couples.

Other relevant parameters of the CDTs and of the JIT
classifier are described in Table III. The Γ parameter tunes
the ICI-based CDT sensitivity, while Γref and λ refer to the
refinement procedure; detailed descriptions and guidelines on
how to set these parameters can be found in [4]. To speed
up the concept-drift detection (at the expenses of a larger
number of false positives introduced by the CDTs) we do
not enforce here the change-validation procedure, though in
different contexts it can be conveniently used. The parameters
θL, θU , α and τ of E are set in a very conservative way so as
to prevent merging supervised couples of different concepts (at
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Fig. 2. Scalar Datasets: The classification errors over time for the proposed JIT classifier and the other methods. The reference classifier is a k-NN

the cost of missing some correct matches between concepts).
Each dataset has been processed by using k-NN as a base

classifier. In some datasets, experiments have been run with
the NB and the SVM classifiers; results are reported in Table I.

TABLE III
JIT CLASSIFIER PARAMETERS

Parameter Value Description
Γ 2 ICI-based CDT parameter

Γref 2 ICI-based CDT parameter
λ 1.5 ICI-based CDT parameter

θL and θU 0.3Fκj parameters of TOST
α 0.1 parameters of TOST
τ 0.8 Threshold of (14)

B. Discussion
The SCALAR 1 dataset shows that both JIT classifiers tend

to the Bayes error even when an abrupt concept drift occurs: in
fact, before the concept drift their performance are very close
to that of U , the continuously reconfigured classifier (black
line). Then, after t = 5000, the JIT classifiers quickly adapt
to the new concept by removing the obsolete training samples.
The short memory classifier W provides the best performance
right after the change, however, it is not able to improve its
accuracy over time: it follows that in stationary conditions
both JIT classifiers outperform W and the ensemble E as the
selection rule of E may choose W . Although the dataset does
not contain recurrent concepts, Table I shows that the proposed
JIT classifier provides a marginal improvement over the others.
This is due to the fact that the identification of recurrent
concepts mitigates the impact of CDT false positives, as the
operator E eventually merges sequences of supervised samples
that have been erroneously split by the operator D. Since here
the precision equals 1, representations from different concepts
are never considered equivalent. Results are similar for both
the k-NN and the NB classifier.

The effectiveness in identifying recurrent concepts clearly
emerges in SCALAR 2 and SCALAR 2A datasets. The error
curves in Fig. 2 show that recovering recurrent concepts
is definitively beneficial: as soon as the recurrent concept
procedure is activated (i.e., after νXMX observations since
Tref or mνεMε observations when the detection comes from
CDTε) the JIT outperforms the JIT without the recurrent
concept management capability. Such an improvement is more
substantial in the last concept drift, where it is possible to
gather supervised couples from the two previous occurrences
of the same concept. According to Table I, the U classifier has
a lower classification error than the JIT on the SCALAR 2A
when k-NN is used as a base classifier; this is due to the
fact that U takes always advantage of recurrent concepts, as
shown in Fig. 2, since it stores all the supervised couples in
its knowledge base. However, U achieves better performance
only when the concept drift results in reduced losses in the
classifier accuracy. The precision and recall values in Table I
show that the equivalence operator provides no false positives
and the false negatives increase as the concept drift detection
becomes more challenging (SCALAR 2A).

In the SCALAR 3 and SCALAR 3A datasets the JIT is
slower in adapting to concept drift than in other scalar datasets:
CDTX cannot detect this type of concept drift since the input
data distribution remains unaltered. A possible large detection
latency might arise due to the fact that only one sample out of
m = 5 is supervised and CDTε is executed every mνε = 100
observations. Here, E outperforms other classifiers, since after
each concept drift it selects the classifier W that regularly
refreshes its knowledge base. The identification of recurrent
concepts is successful in both datasets as the equivalence
operator E does not introduce false positives (precision is 1).
In the SCALAR 3A dataset, characterized by a larger overlap
among classes than in SCALAR 3, the recall values are lower,
indicating that the identification of recurrent concepts becomes
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Fig. 3. Multivariate Datasets: the classification error as function of time for the proposed JIT and the other classifiers. These plots have been obtained using
a k-NN as base classifier.
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Fig. 4. Real World Datasets: the classification error as function of time for the proposed JIT and the contrasted classifiers. The average classification error
is computed on a window containing the last 40 supervised samples.

more difficult when the change is less evident. The classi-
fication errors in Table I show that, here, the improvement
provided by additional supervised information coming from
recurrent concepts is marginal, and is negatively compensated
by detection delays introduced by CDTε and errors in concept
isolation. Immediately after each concept drift, the classifier
K becomes obsolete: the larger the knowledge base, the less
beneficial contribution of fresh supervised couples. Coherently,
when NB is used as base classifier, also recall improves since
K is more accurate on this dataset.

The SCALAR 4 and SCALAR 4A datasets illustrate situa-
tions where the procedure for identifying recurrent concepts
fails, and the JIT classifier without the procedure to identify

recurrent concepts outperforms the proposed JIT classifier. The
low values of precision show that the operator E introduces
some false positives considering equivalent descriptors coming
from different concepts. Of course, the probability of having
a false positive increases with the number of comparisons (the
error curves diverge in the last part of the dataset in Fig 2),
and when the concept drift is less severe (the precision and
recall values in SCALAR 4A are lower in than SCALAR 4). In
both datasets, the best performing solution is the JIT without
the identification of recurrent concepts ability.

Results on other multivariate datasets presented in Fig. 3
are in line with the comments about the SCALAR datasets. In
particular, the CHECKERBOARD datasets show that both the
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Fig. 5. The histograms of T̂ , Tend and Tref, the outcomes of the CDTs, in two considered datasets. The skewed and specular shape of the histograms of
Tend and Tref proves that the concept isolation procedure is effective. These histograms show that the JIT classifier is successfully reconfigured, and operates
after each detection as in its initial state, without drifting.

JIT classifiers and the procedure for dealing with recurrent
concepts successfully operate when the classification task
becomes more difficult. Moreover, its performance does not
degrade significantly when longer sequences, characterized
by several concept drifts, are considered as in CHECKER-
BOARD 3 (although the equivalence operator has few false
positives). In all multivariate datasets, the lowest classification
error is achieved by the ensemble E, whose structural prompt-
ness compensates the absence of CDTX , as in the SCALAR 3
dataset.

On the CHECKERBOARD datasets, the concept drift is
sometimes more difficult to be detected, resulting in a longer
detection delay. To have an idea about how difficult detecting
a specific concept drift is, we observe the performance of
the short memory classifier W . Since both W and K0 are
trained over the last 40 samples, the error curves of W provide
reliable estimates of p0 in (10), i.e., the expected value of the
error monitored by CDTε. Basically, the lower the variation in
the classification error of W , the more difficult the detection.
For instance, it is more difficult to detect the third concept
drift in CHECKERBOARD 1 than the others (p0 varies from
≈ 25% to ≈ 48%, while in the first concept drift it varies from
≈ 12% to ≈ 50%, and in the second from ≈ 25% to ≈ 60%)
and this results in a longer detection latency that may impair
the concept isolation performance. It follows that in Fig. 5
the histograms of T̂ , Tref and Tend are more spread in corre-
spondence of the third concept drift of CHECKERBOARD 1

than elsewhere. In contrast, histograms of SCALAR 2 show
that, when both CDTX and CDTε simultaneously operate, the
distributions of T̂ , Tref and Tend do not significantly change and
the number of missed detections is negligible. The skewed and
specular shapes in the histograms of Tend and Tref prove the
effectiveness of the concept isolation, as the largest area below
these histograms is concentrated around T ∗. These histograms,
together with the trend of the classification errors in all plots,
show that the JIT classifier is successfully reconfigured after
each detection.

Datasets derived from SINE 2 show that the class noise
as well as the injection of irrelevant attributes increase the
classification error of K0, as it emerges from the error curves
of SINE 2 and SINE IRREL 2A in Fig. 3 (as a consequence
the detection latency of CDTε is higher). Furthermore, the
operator E becomes less accurate, as shown the by recall
values in Table I. Nevertheless, in these datasets, the manage-
ment of recurrent concepts is always successful and provides
substantial improvements in the classification errors of Table
I. The trend of the classification error on GAUSSIAN MUL-
TIVARIATE is in line with the other results, with the operator
E that eventually merges concepts erroneously split by false
positives of D, as in SCALAR 1.

The performance on the EMAIL LIST dataset is consistent
with the above considerations. The classification task is here
rather challenging due to the very large dimensionality of
the observations. The plots in Fig. 4 show that using SVM
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as the base classifier guarantees, in stationary conditions,
lower classification errors. Thus, the detection of a classes’
swap and the identification of recurrent concepts is more
successful. In fact, after the last detection, a recurrent concept
is identified. In contrast, when a k-NN is used as the base
classifier, the operator E never assesses the equivalence of
concept representations and there are no false positives or true
positives. In both cases, E provides the best performance and
its trend is similar to results given in [26]. The NB classifier
has not been considered here, as well as in CHECKERBOARD
and SINE 2 datasets, since the Gaussian prior is inadequate
to model these classification problems. Differently, when the
prior well fits the classification problem, the NB achieves the
accuracy bound set by the theory (in stationary conditions) as
well as the best recurrent concepts identification performance.

We emphasize that differences in the classification error
of Table I between the JIT and the JIT classifier with-
out the recurrent concept management ability are statisti-
cally significant according to a paired t-test at significance
level 0.01 (except in SCALAR 1 when using k-NN and
MULTIVARIATE GAUSSIAN when using NB). It follows that
exploiting recurrent concepts provides substantial improve-
ments when facing challenging classification tasks affected by
recurrent concept drift (such as the CHECKERBOARD and
SINE 2 datasets).

The experiments show that detecting concept drift by
solely monitoring the classification error might require many
supervised samples and, in turn, the classifier might keep
obsolete knowledge for several observations. It is clear that
the JIT classifier often relies on the concept-drift detection
ability of CDTX , monitoring the input distribution. In those
situations where CDTX is not a viable option, for instance
when the observations contain quantitative observations, the
JIT classifier relies only on the concept-drift detection ability
of CDTε. Then, it is convenient to enforce an ensemble
combining the JIT with a short memory classifier such as W ,
to exploit the prompt reaction to concept drift that this passive
classifier intrinsically guarantees (in Fig. 2 - 4 the classifier E
is definitively successful in reacting to concept drift). However,
in stationary conditions (i.e., between two abrupt concept
drifts), the JIT classifier asymptotically tends to the Bayes
error (whenever the concept drift is detected and concepts are
correctly isolated), while the short memory classifier might
impair the performance of the ensemble, as it emerges by
analyzing the long stationary sequences of SCALAR 1 in
Fig. 2 and MULTIVARIATE GAUSSIAN in Fig. 3.

VII. CONCLUSION

The proposed JIT approach is a flexible tool for designing
adaptive classifiers able to cope with classification problems
affected by concept drift. In this work we enhance the JIT
classifier framework by adding, beside the concept-drift de-
tection ability, a general formulation that includes an explicit
management of recurrent concepts. When facing challenging
classification problems, the proposed JIT classifier success-
fully exploits supervised information acquired in the past,
and shows to be particularly effective if inserted within an
ensemble framework.

The JIT classifier is meant for abrupt concept drifts, while
different approaches could be pursued for extending this
result to the gradual drift case. Here, to a first extent, the
detection/adaptation paradigm does not allow to achieve the
optimality like in the abrupt case. Gradual concept drift is
characterized by a non-stationary condition lasting for a long
time, and is perceived by the JIT approach as a sequence
of abrupt concept drifts having small magnitude, causing the
continuous renewal of the classifier knowledge base. A prefer-
able approach would consist in predicting and compensating
such nonstationarity, by learning the drift model. Other works
will inspect techniques to enhance the concept-drift detection
ability e.g., by monitoring the distribution of the classifier
output on both supervised and unsupervised samples, as well
as enforcing ensembles of CDTs.
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and R. Morales-Bueno, “Early drift detection method,” 2006.

[18] K. Nishida and K. Yamauchi, “Detecting concept drift using statistical
testing,” in Discovery Science. Springer, 2007, pp. 264–269.

[19] J. Patist, “Optimal window change detection,” in Data Mining Work-
shops, 2007. ICDM Workshops 2007. Seventh IEEE International Con-
ference on. IEEE, 2007, pp. 557–562.

[20] A. Bifet and R. Gavalda, “Learning from time-changing data with adap-
tive windowing,” in SIAM International Conference on Data Mining,
2007, pp. 443–448.

[21] L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, and O. Kipersztok,
“Real-time data mining of non-stationary data streams from sensor
networks,” Information Fusion, vol. 9, no. 3, pp. 344–353, 2008.

[22] G. Widmer and M. Kubat, “Learning in the presence of concept drift
and hidden contexts,” Mach. Learn., vol. 23, no. 1, pp. 69–101, Apr.
1996. [Online]. Available: http://dx.doi.org/10.1023/A:1018046501280

[23] Y. Yang, X. Wu, and X. Zhu, “Mining in anticipation for concept
change: Proactive-reactive prediction in data streams,” Data Min.
Knowl. Discov., vol. 13, no. 3, pp. 261–289, Nov. 2006. [Online].
Available: http://dx.doi.org/10.1007/s10618-006-0050-x

[24] M. Lazarescu, “A multi-resolution learning approach to tracking concept
drift and recurrent concepts,” in PRIS, 2005, p. 52.

[25] S. Ramamurthy and R. Bhatnagar, “Tracking recurrent concept drift in
streaming data using ensemble classifiers,” in Machine Learning and
Applications, 2007. ICMLA 2007. Sixth International Conference on,
dec. 2007, pp. 404 –409.

[26] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Tracking recurring contexts
using ensemble classifiers: an application to email filtering,” Knowl.
Inf. Syst., vol. 22, no. 3, pp. 371–391, Mar. 2010. [Online]. Available:
http://dx.doi.org/10.1007/s10115-009-0206-2

[27] G. Widmer, “Tracking context changes through meta-learning,” Mach.
Learn., vol. 27, no. 3, pp. 259–286, Jun. 1997. [Online]. Available:
http://dx.doi.org/10.1023/A:1007365809034

[28] J. a. B. Gomes, E. Menasalvas, and P. A. C. Sousa, “Tracking recurrent
concepts using context,” in Proceedings of the 7th international
conference on Rough sets and current trends in computing, ser.
RSCTC’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 168–177.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1876210.1876234

[29] J. a. B. Gomes, M. M. Gaber, P. A. C. Sousa, and E. Menasalvas,
“Context-aware collaborative data stream mining in ubiquitous
devices,” in Proceedings of the 10th international conference on
Advances in intelligent data analysis X, ser. IDA’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 22–33. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2075337.2075344

[30] J. a. B. Gomes, E. Menasalvas, and P. A. C. Sousa, “Improving
the learning of recurring concepts through high-level fuzzy
contexts,” in Proceedings of the 5th international conference on
Rough set and knowledge technology, ser. RSKT’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 234–239. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1929344.1929383

[31] J. Gama and P. Kosina, “Tracking recurring concepts with
meta-learners,” in Progress in Artificial Intelligence, ser. Lecture
Notes in Computer Science, L. Lopes, N. Lau, P. Mariano,
and L. Rocha, Eds. Springer Berlin / Heidelberg, 2009, vol.
5816, pp. 423–434, 10.1007/978-3-642-04686-535. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04686-535

[32] J. a. Gama and P. Kosina, “Learning about the learning
process,” in Proceedings of the 10th international conference on
Advances in intelligent data analysis X, ser. IDA’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 162–172. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2075337.2075356

[33] P. Li, X. Wu, and X. Hu, “Mining recurring concept drifts with
limited labeled streaming data,” ACM Trans. Intell. Syst. Technol.,
vol. 3, no. 2, pp. 29:1–29:32, Feb. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2089094.2089105

[34] M. Basseville and I. V. Nikiforov, Detection of abrupt changes: theory
and application. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
1993.

[35] G. S. Mudholkar and M. C. Trivedi, “A Gaussian approximation to the
distribution of the sample variance for nonnormal populations,” Journal

of the American Statistical Association, vol. 76, no. 374, pp. pp. 479–
485, 1981.

[36] A. Goldenshluger and A. Nemirovski, “On spatial adaptive estimation of
nonparametric regression,” Math. Meth. Statistics, vol. 6, pp. 135–170,
1997.

[37] V. Katkovnik, “A new method for varying adaptive bandwidth selection,”
IEEE Trans. on Signal Proc, vol. 47, pp. 2567–2571, 1999.

[38] R. Johnson and D. Wichern, Applied multivariate statistical analysis.
Prentice Hall, 2002, no. v. 1.

[39] J. C. Hsu, J. T. G. Hwang, H.-K. Liu, and S. J. Ruberg,
“Confidence intervals associated with tests for bioequivalence,”
Biometrika, vol. 81, no. 3, pp. 103–114, 1994. [Online]. Available:
http://www.jstor.org/stable/2337054?origin=crossref

[40] P. Bauer and M. Kieser, “A unifying approach for confidence
intervals and testing of equivalence and difference,” Biometrika,
vol. 83, no. 4, pp. pp. 934–937, 1996. [Online]. Available:
http://www.jstor.org/stable/2337298

[41] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for
large-scale classification,” in Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, ser.
KDD ’01. New York, NY, USA: ACM, 2001, pp. 377–382. [Online].
Available: http://doi.acm.org/10.1145/502512.502568

Cesare Alippi received the degree in electronic
engineering cum laude in 1990 and the PhD in
1995 from Politecnico di Milano, Italy. Currently,
he is a Full Professor of information processing
systems with the Politecnico di Milano. He has been
a visiting researcher at UCL (UK), MIT (USA),
ESPCI (F), CASIA (CN).

Alippi is an IEEE Fellow, Vice-President educa-
tion of the IEEE Computational Intelligence Society
(CIS), Associate editor (AE) of the IEEE Com-
putational Intelligence Magazine, past AE of the

IEEE-Tran. Neural Networks, IEEE-Trans Instrumentation and Measurements
(2003-09) and member and chair of other IEEE committees including the
IEEE Rosenblatt award.

In 2004 he received the IEEE Instrumentation and Measurement Society
Young Engineer Award; in 2011 has been awarded Knight of the Order of
Merit of the Italian Republic. Current research activity addresses adaptation
and learning in non-stationary environments and Intelligent embedded sys-
tems. He holds 5 patents and has published about 200 papers in international
journals and conference proceedings.

Giacomo Boracchi received the M.S. degree in
Mathematics from the Università Statale degli Studi
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