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A Cognitive Fault Diagnosis System
for Distributed Sensor Networks
Cesare Alippi, IEEE Fellow, Stavros Ntalampiras, and Manuel Roveri

Abstract—The paper introduces a novel cognitive Fault Di-
agnosis System (FDS) for distributed sensor networks which
takes advantage of spatial and temporal relationships among
sensors. The proposed FDS relies on a suitable functional graph
representation of the network and a two-layer hierarchical
architecture designed to promptly detect and isolate faults. The
lower processing layer exploits a novel Change Detection Test
(CDT) based on Hidden Markov Models (HMMs) configured to
detect variations in the relationships between couples of sensors.
HMMs work in the parameter space of linear time invariant
(LTI) dynamic systems approximating, over time, the relationship
between two sensors; changes in the approximating model are
detected by inspecting the HMM likelihood. Information pro-
vided by the CDT layer is then passed to the cognitive one
which, by exploiting the graph representation of the network,
aggregates information to discriminate among faults, changes in
the environment and false positives induced by the model bias
of the HMMs.

Index Terms—Fault diagnosis; distributed sensor network;
intelligent sensors; hidden Markov model.

I. INTRODUCTION

SENSOR networks monitoring a real environment are prone
to faults or aging phenomena, whose impact affects the

overall system performance. In fact, permanent or transient
faults can influence the sensors, the analog electronics, the
digital part of the embedded system inducing, in the best case,
functional errors in the processing chain. In turn, erroneous
information generates a strong side effect on the subsequent
control chain leading to wrong decisions and inappropriate
control actions.
A Fault Diagnosis System plays the important role of su-

pervising the process operations in order to detect, isolate and
identify a potential fault and, possibly, design accommodation
actions [1]. The main components of the FDS are learned from
the available data when physical descriptions for the process
are unavailable. Not rarely, an appropriate model describing
the underlying process is built and its validity assessed over
time by the FDS through a change inspection mechanism,
e.g., by observing changes in some features such as the
approximating model residuals or parameters.
Unfortunately, when a change in the model is detected by

the FDS, three situations might arise:
• “model bias”: The model is no more representing the
current data due to model approximating inefficiencies;
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• “change in the environment”: the environment is time-
variant and the trained model is no more able to explain
the current data;

• “fault”: a sensor or a component of a unit is affected by
a fault which induces an error in the datastream.

Distinguishing among the above perturbation classes is a
major achievement which, whenever possible, allows the FDS
for isolating the fault/change and proposing the appropriate
accommodation action.
Published FDSs for sensor networks generally do not allow

for distinguishing between faults and changes in the environ-
ment [2]. Moreover, the model bias is generally considered
negligible, a hardly satisfied hypothesis in many applications.
A review of the literature is given in Section II.
The paper presents a novel cognitive FDS acting on sensor

datastreams that removes the strong hypotheses assumed in the
literature; as such, under reasonable assumptions, it deals with
the model bias case and proposes a method for discriminating
between faults and changes in the environment.
Hidden a-priori information related to spatial and temporal

relationships among sensor datastreams (both explicit and
implicit) is exploited, leading to a functional dependency graph
where nodes are the sensors and arcs are associated with the
sensor-to-sensor relationship. In particular, for each sensor
couple, a HMM is designed, which receives the parameters
of a LTI model approximating the relationship. As such,
spatial redundancy is modelled with a HMM operating in the
parameter space of LTI dynamic models embedding the time
dependency. When the likelihood between the HMM-based
learning machine and the new incoming datastream falls below
a threshold (which can be learnt as well) a change is detected
(HMM-based Change-Detection Test) at the detection layer.
The cognitive layer of the FDS, activated in response to a
change alarm raised by the detection one, separates faults from
time variant and bias cases by operating on the dependency
graph of the network. At the same time, it allows us for
isolating the fault for a possible subsequent accommodation
phase.
The novelties of the proposed approach can be summarised

as follows:
• introduction of a dependency graph representing the
temporal and spatial relationships among the sensor units;

• suggestion of the joint use of LTI models and HMMs for
designing a Change-Detection Test;

• design of a cognitive graph-based approach able to dis-
tinguish among changes induced by model bias, sensor
faults or changes in the environment.
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The paper is organized as follows. Section II surveys the
fault diagnosis literature for sensor networks. Section III
presents the modelling methodology for functional relation-
ships in sensor networks, while Section IV introduces the
proposed hierarchical cognitive FDS. Experimental results are
given in Section V and conclusions drawn in the last Section.

II. RELATED LITERATURE

The fault diagnosis system literature for sensor networks
(also called sensor validation) embraces two main approaches
exploiting information either coming from a single sensor
or a set of sensors (a detailed review of the fault-detection
literature can be found in [1], [2]). The former approach aims
at detecting faults by inspecting data coming from a single
sensor. Here, we have the limit checking method [3], which
raises an alarm when the physical quantity under monitoring
overcomes a threshold, and change-detection methods e.g., [4],
[5], which aim at detecting variations in the statical behaviour
of the physical phenomenon under observation. Techniques
following the latter approach, and based on physical or ana-
lytical redundancy methods, detect faults by exploiting redun-
dant/correlated information coming from multiple sensors.
Physical redundancy requires redundant sensors measuring

the same physical quantity, possibly at different resolution
levels. For instance, [6] suggests a fuzzy-based technique to
correct data subject to sensor drifts and intermittent faults in
the case of truly redundant sensors. Differently, analytical re-
dundancy exploits functional relationships among the sensors
which measure different, but correlated, physical quantities.
Most design approaches for fault diagnosis rely on this concept
and assume that a mathematical model of the healthy system
is available. Fault diagnosis is achieved by comparing actual
observations with those coming from the prediction model
and, then, inspecting residual values or differences among
redundant sensors [6]. [7] suggests a fuzzy rule approach for
validation of highly correlated sensors (or quasi-redundant
sensors). Several techniques based on artificial neural net-
works have been presented in the literature (e.g., [8]–[10]).
For example, [8] suggested the use of autoassociative neural
networks and Kohonen maps for sensor failure detection in
redundant/correlated sensors. [9] describes the use of neural
networks in sensor fault detection with specific attention
to flight control systems. [10] applies a feedforward neural
network to data coming from a space shuttle main engine.
Other analytical redundancy-based approaches consider, for
example, the use of Principal Component Analysis [11] and
the Nadaraya-Watson statistical estimator [12]. Although these
methods may achieve satisfactory performance levels they
assume availability of an accurate model.
Fault detection and diagnosis issues have also been widely

addressed within the Computational Intelligence community.
For example, [13] suggests a model-based process supervision
for fault detection and identification where a nonlinear ob-
server based on a Radial basis function (RBF) neural network
is used to approximate the unknown nonlinear dynamics (the
linear part is assumed to be known). In the case of faults, a
different RBF is used to identify the nonlinear characteristics

of the fault profile. Similarly, [14] presents a robust fault
diagnosis framework for detecting and approximating state
and output faults affecting nonlinear multi input-multi output
dynamical systems. Here, the nonlinear component of the
process and sensor uncertainties are assumed to be unknown
but bounded. [15] suggests a FDS for distributed systems
based on a set of finite state machines (e.g., the model de-
scribing the message exchange within a transmission protocol).
The nominal and the faulty behaviour of the system are
assumed to be known; the detection phase relies on an observer
comparing the ideal with the measured output datastreams.
Several fault detection and diagnosis systems for application-
specific scenarios can also be found in [16]–[20].
A practical way to conduct group level analysis for fault

diagnosis is the K over N approach [21]: a change is detected
when K out of N functionally related sensors detect it. Even
though the approach may provide reasonable performance, it
suffers from a severe disadvantage: it treats all sensors iden-
tically. Moreover, detection performance is heavily influenced
by K . Lower values of K lead to low detection latency at the
expenses of higher false positive rates. The opposite holds.
Echo state network (ESN) solutions have been recently

considered for fault diagnosis, mainly at the sensor level. For
instance, [22] exploits ESNs to detect faults in the temperature
and moisture sensors of a mote-class device. The ESNs are
trained by using data coming from the nominal state and
no spatial redundancy among different units is taken into
account. [23] suggests an ESN for identifying anomalies in
the concentration of natural gas in underground coal mines.
The ESN is trained on normal (safe condition) data coming
from CH4, CO2, CO, O2 and pressure sensors; the detection
mechanism is based on the difference between the output of
the ESN and that of the sensor (with a threshold defined
according to the Neyman-Pearson test).
A different approach was suggested in [24], [25] and

[26] where hidden semi-Markov models (HSMM) have been
proposed to improve fault detection and identification. In
particular, [24] suggested the use of HSMMs trained on
temperature, speed and direction of the wind as well as the
historical values of the PM2.5 concentration to predict future
instances. [25] and [26] exploit HSMMs for health monitoring
of hydraulic pumps. Wavelet-based features of the vibrational
signals coming from the pumps have been used to train the
fault detection/identification system and a fault dictionary is
requested to detect/isolate the erroneous conditions. All above
approaches work at the single sensor level by exploiting
temporal relationships and do not consider existing spatial
dependencies among the sensor units (which is one of the
novelties of the proposed approach).
It should be noted that methods present in the literature

neither consider a dynamic predictive model coupled with
a HMM nor exploit the functional graph of the network to
carry out a cognitive analysis able to separate faults from
approximating model bias and environmental changes as we
do here.
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III. MODELING FUNCTIONAL RELATIONSHIPS
IN SENSOR NETWORKS

Let us consider a sensor network composed of N fixed
sensing units deployed within the environment P . Each unit
can host up to M sensors opening views on different physical
aspects of P (e.g., temperature, humidity, change in slope,
vibrations, rain intensity). Each j-th sensor of the i-th unit
acquires a scalar datastream Xi,j .
We neither require a specific topology for the network nor

a particular communication routing protocol. The FDS can be
in execution at the remote control room (where all data are
received) or at the base stations (e.g., within a hierarchical
topology setup) if the network can be partitioned into func-
tionally disjoint sub-networks (each of which containing a
base station). Data communication among units must hence
be intended between the units and the base station/control
room where the FDS algorithm is executed. A synchronization
algorithm (e.g., [27]) should be considered to guarantee time
consistency among samples whenever poor clock generators
(as those in sensor networks) are available (the clock skew
can easily rise to seconds in few days [28]).

A. Modeling the network: the dependency graph

The cognitive framework for fault diagnosis relies on the
ability to model functional relationships among the acquired
views of P . In more detail, each relationship captures spatial
and temporal dependency from data provided by a generic
couple of sensors. Fig. 1 shows an example of a sensor network
with functional dependencies.
A direct relationship exists between a couple of sensors

of the same type (e.g., temperature vs temperature): if datas-
treams Xi,j and Xv,j , i != v are correlated, an arc linking the
j-th sensor of unit i with its counterpart of unit v is introduced.
For instance, two clinometers insisting on the same connected
structure are related; those deployed far apart probably are not.
An indirect relationship can be introduced between two

generic sensors by means of a third entity. For instance, a
clinometer and a strain gauge sensor whose readouts are af-
fected by a parasitic thermal effect will be indirectly correlated
thanks to the temperature dependency. Such a relationship can
exist between sensors mounted in the same unit (i.e., X i,j and
Xi,u, j != u) or present in different units (i.e., X i,j and Xv,u,
i != v, j != u). Of course, indirect relations are mitigated
by the presence of compensation mechanisms; in this case
information useful for the analysis must be extracted before
compensation takes place.
De facto, direct and indirect relationships introduce a

functional constraint between couples of sensors. Denote by
f{(i,j),(u,v)} the functional relationship between the generic j-
th sensor of unit i and the v-th sensor of unit u. The nodes of
G are the network sensors; the arcs represent the functional
relationships between couples of sensors. Given a network, not
all the (N ×M)(N ×M − 1) relationships in G are relevant.
For example, two sensors might be weakly correlated due to
topological or phenomenological reasons or not correlated at
all in one direction due to causality.

sensor 1

sensor 2

sensor 3

Unit 1

Unit 2

Unit 3

Unit 4

sensor 1

sensor 2

sensor 3

sensor 1

sensor 2

sensor 3

sensor 1

sensor 2

sensor 3

direct

indirect

Fig. 1. Direct and indirect relationships in a distributed monitoring network.
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Fig. 2. The dependency graph of the sensor network og Fig. 1.

The reduced dependency graph is then derived from G and
defined as graph

GR = {V,E}

where V is the set of nodes of the graph representing the
N × M sensors and E a set collecting all arcs associated
with functional relationships whose correlation is above a
threshold. The level of dependency associated with relation-
ship f{(i,j),(u,v)} is here chosen to be the linear correlation
index between two datastreams Xi,j and Xv,u: when the peak
of the crosscorrelation is above γmin, γmin being a suitably
tuned threshold, the relationship is considered to be relevant
and worth to be included in E; other dependency indexes can
be surely derived and considered. Let F be the set of functional
relationships with correlation index larger than γmin.
We remove from GR isolated nodes.
Fig. 2 shows the graph-based representation of the sensor

network of Fig. 1: we have 4 units; each unit is a subgraph
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representing the mounted sensor.

B. Modeling the relationship between two sensors with a
Hidden Markov Model
In the following we assume that the relationship between

a couple of sensors f{(i,j)(u,v)} can be modelled either as a
time-invariant (TI) dynamic system or as a finite sequence
of TI dynamic systems satisfying the HMM hypotheses. No
assumption about the linearity of the relationship is made.
Let’s imagine to model now a f{(i,j)(u,v)} with the Single-

Input Single-Output (SISO) Linear (LTI) model of form

A(z)Xi,j(t) =
B(z)

F (z)
Xv,u(t) +

C(z)

D(z)
d(t) (1)

where z is the backward time-shift operator, d(t) an inde-
pendent and identically distributed (i.i.d.) random variable
accounting for the noise, A(z), B(z), C(z), D(z), and F (z)
represent the z-transform functions of model parameters θA,
θB , θC , θD and θF , respectively. In the following we assume
A(z), B(z), C(z), D(z), and F (z) to be either time-invariant
or time-varying but following a Markov chain model.
A given SISO model M (e.g., ARX, ARMAX or OE) is

then an element locally approximating f θ
{(i,j),(u,v)}, ŷθ =

M(θ), θ ∈ DM parametrized in θ = [θA, θB, θC , θD, θF ].
The use of linear models allows us to apply theoretical

results delineated in [29], [30]. More specifically, consider
a training dataset composed of NT {input,output} couples
{u(t), y(t)}NT

t=1, a loss function VNT = 1
NT

∑
NT

(y − ŷθ)2

whose minimization provides an estimate θ̂, of the optimal
parameter θ∗ = argminθ∈DM limNT→+∞ E [VNT ].
Under the assumption that each f{(i,j),(u,v)} function sat-

isfies the exponential stability for closed loop (i.e., accurate
approximations of Xi,j(t) can be generated given finite time
windows of Xi,j(.) and Xv,u(.)), from [30] we have that

√
NTP

− 1
2 (θ̂ − θ∗) ∼ N (0, I) when NT → ∞; (2)

P ∈ Rp×p is the covariance matrix of the p parameters of the
model.
It comes out that, under the above assumption and a

sufficiently large N the distribution underlying the parameter
vectors θ̂ is a multivariate Gaussian, with mean θ∗ and covari-
ance matrix P . We emphasize that the same framework can
be applied to Extreme-Learning Machines [31] or Reservoir
Computing Networks [32].
By following the (2) a HMM with parameters θ ruled

by a mixture of gaussians becomes a natural solution to
approximate f{(i,j),(u,v)}. The nodes of the HMM represent,
de facto, a probabilistic ensemble of LTI models somehow
minimizing the model bias ||ŷθ − f{(i,j),(u,v)}|| if the training
set is sufficiently informative. More in detail, the HMM is
defined as

H = {n,F , A,π}, (3)

where n is the number of states, F = {p1, . . . , pn} is the set
of probability density functions (pdfs) associated with each
state, A is the n× n state transition probability matrix and π
the n×1 initial state distribution vector. Thanks to (2) the pdf

associated with each state can be safely modelled as a mixture
of Gaussians (GMMs). In fact, the GMM of the i-th state is
defined as

pi(θ̂|Φi) =
Ki∑

k=1

wk,iN (θ̂|µk,i,Σk,i) (4)

where Ki is the number of Gaussian mixtures for the i-th
state, wk,i is the weight for state i and Gaussian mixture
k, Φi = [µ1,i, . . . , µki,i,Σ1,i, . . . ,Σki,i] with µk,i and Σk,i

the mean vector and the covariance matrix for state i and
Gaussian mixture k, respectively. We considered a mixture of
Gaussian functions with diagonal covariance matrices since,
an L-th order full covariance GMM can be achieved using a
diagonal covariance GMM of a larger order [33]. Thus, the
mixture of Gaussian solution is as effective as the former at
a much lower computational cost. We remark that we should
consider a single Gaussian function with full covariance matrix
to model a state of the process.
By modelling parameters θ with a HMM we mitigate the

effect of model bias and time variance provided that the
training set is sufficiently informative and explores both time
variance and nonlinearity.

IV. THE COGNITIVE FAULT DIAGNOSIS SYSTEM
The proposed FDS is organized as the two-layer architecture

of Figure 3. The lower level is composed by a set of Change
Detection Tests (CDTs) each of which monitoring the sta-
tionarity of a relationship associated with a couple of sensors
in GR. Each HMM CDT works in the parameter space θ to
detect variations in the relationship between the two sensors
(the CDT is described in the Section IV-A). Unfortunately,
a CDT is not able to distinguish among changes induced by
a fault in a sensor, an environmental change in P or a false
positive generated by a model bias since such classes are indis-
tinguishable. To address this issue the upper level of the FDS
has been designed to be able to discriminate between faults,
changes in P and false positives by exploiting information
associated with the network graph GR. The upper level of the
FDS relies on a cognitive algorithm aggregating decisions and
log-likelihood information provided by the HMM-CDT in the
lower level. The cognitive aggregation level is described in
Section IV-B.

X(i1,j1) X(v1,u1)

detection likelihood

X(i|E|,j|E|)
X(v|E|,u|E|)

detection likelihood

Cognitive Aggregation Level

Detection Fault/Change in the 
environment

Fault diagnosis system

HMM-based CDT 
on       |E|

HMM-based CDT 
on       1

Fig. 3. The proposed FDS.
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1- Let {X(i,j)(t), 1 ≤ t ≤ T0} and {X(v,u)(t), 1 ≤ t ≤ T0}
be the training set of sequences X(i,j) and X(v,u);

2- Create T0 −NT + 1 overlapping windows of NT data;
3- Estimate parameters θ̂ for each data window and
generate the sequence ST = {θ̂1, . . . , θ̂T0−NT+1};

4- Train H = {s,F , A,π} on ST ;
5- Th = min1≤s≤T0−NT+1 l{(i,j),(u,v)}(s) as in Eq. (5);
6- t = T0, s = T0 −NT + 1;
repeat

7- t = t + 1;
8- Acquire X(i,j)(t) and X(v,u)(t);
9- s = s + 1;
10- Estimate the parameter θ̂s on

{X(i,j)(t̄), t−NT + 1 ≤ t̄ ≤ t} and
{X(v,u)(t̄), t−NT + 1 ≤ t̄ ≤ t};

11- Compute l{(i,j),(u,v)}(s) as in Eq. (5);
12- if l{(i,j),(u,v)}(s) < Th then
13- Raise an alarm: change detected;

end
until (1);
Algorithm 1: The HMM-CDT for a generic functional
relationship f{(i,j),(u,v)} in GR.

A. The HMM-based Change Detection Test
The proposed HMM-CDT aims at evaluating, by means of

a HMM, the evolution over time of the parameters θ̂s approx-
imating the relationship f{(i,j),(u,v)}; X(i,j) is the output and
X(v,u) the input of the LTI. θ̂ are estimated on overlapping
windows of NT data.
The HMM-CDT requires the training of HMMH{(i,j)(v,u)},

devoted to model the relationship between sensors (i, j) and
(u, v) H{(i,j),(u,v)}, is trained by means of the Baum-Welch
algorithm [34].
During the operational life, the parameter θ̂s is estimated

on the s-th window of data and the log-likelihood

l{(i,j),(u,v)}(s) = P (θ̂1, . . . , θ̂s|H{(i,j),(u,v)}) (5)

computed and indicating how likely the sequence of estimated
parameters θ̂1, . . . , θ̂s has been generated by the H{(i,j),(u,v)}.
The log-likelihood is computed with the Viterbi algorithm
[35].
When the log-likelihood decreases below a threshold Th, a

change in the relationship is detected (the sequence of inputs
is no more recognized by the learning machine). Threshold T h

can be defined by the operator, who exploits a-priori available
information. However, if not available, Th can be estimated
as the minimum value assumed by the log-likelihood in the
training (or better validation) sequence. Th can be scaled
by a coefficient factor c1 (with 0 ≤ c1 ≤ 1) to tradeoff
the robustness of the machine w.r.t. false positives and false
negatives.
The HMM-based CDT is detailed in Algorithm 1.

B. The cognitive aggregation level
The cognitive level aggregates the information coming from

all sensor units to distinguish among faults, changes in P

1- HMM-CDT associated with H{(i,j),(u,v)} detected a
change in the s̄-th data window;

2- Partition the graph into sets E+, E− and EP according
to Eq. (7), (8), (9) ;

3- Compute S+, S−, SP according to Eq. (10), (11) and
(12);

4- Compute T+, T−, TP according to Eq. (13), (14) and
(15);

5- if SP < TP then
6- Change in P detected;
else

7- if S+ < T+ and S− < T− then
8- Model Bias in H{(i,j),(u,v)} detected;

else
9- if S+ < T+ then
10- Fault at sensor X(i,j) detected;

else
11- Fault at sensor X(v,u) detected;

end
end

end
Algorithm 2: The algorithm which combines the HMM-
based CDTs for change identification and isolation.

and false positives induced by model bias in the HMM
CDT. Differently from the HMM-CDTs that are executed
sequentially, the cognitive aggregation level is activated only in
response to a detection alarm raised by at least a CDT-HMM.
Detections and log-likelihoods of others CDTs are used to
assess and, possibly, identify the change.
The motivating idea is that a change in P for a given type of

sensors must be perceived also by a set of other CDTs, at least
as a decrement in the log-likelihood values (not necessarily
below the threshold). Differently, in the case of faults, only the
CDTs associated with relationships that have either as input
or output the faulty sensor are affected by the change. Finally,
if a false positive occurs, other CDTs should not be affected.
To evaluate the reliability of the information coming from

HMM-CDTs we introduce a reliability index w{(i,j),(u,v)} for
the HMM H{(i,j),(u,v)} defined as

w{(i,j),(u,v)} =
∑

1≤s≤T0−NT+1

l{(i,j),(u,v)}(s). (6)

Weights are computed on the training set; the weighted re-
duced graph is the reduced graph augmented with the weight
information.
Definition: Let E+ be the set of functional relationships

such that either the source or the target node of the arc is
X(i,j), i.e.,

E+ = {f(̄i,j̄)(v̄,ū) ∈ {F − f(i,j)(v,u)}|
(̄i = i and j̄ = j) or (v̄ = i and ū = j)}. (7)

Definition: Let E− be the set of functional relationships
such that either the source or the target node of the arc is
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Fig. 4. The cognitive aggregation level: a) the reduced weighted dependency graph; b) an example of arcs partitioning into E+, E− and EP given a change
detected in the functional relationship f{(3,3),(1,3)} .

X(v,u), i.e.,

E− = {f(̄i,j̄)(v̄,ū) ∈ {F − f(i,j)(v,u)}|
(̄i = v and j̄ = u) or (v̄ = v and ū = u)}. (8)

Definition: Let EP be the set of functional relationships
whose source or target node is neither X(iq,jq) nor X(vq,uq),
i.e.,

EP = F − {E+ ∪ E− ∪ {f{(i,j)(v,u)}} (9)

After a change detected in f{(i,j)(v,u)} the remaining F̄ − 1
functional relationships of the weighted reduced dependency
graph are partitioned into sets E+, E− and EP . The reason
for the partitioning is as follows:

• a fault in sensor X(i,j) affects the functional relationships
in E+ but not those in E− and EP ;

• a fault in the sensor X(v,u) affects the functional rela-
tionships in E− but not those in E+ and EP ;

• a change in P affects the functional relationships in E−,
E+ and EP ;

• a model bias affecting H{(i,j),(u,v)} would mostly affect
the functional relationship between (i, j) and (u, v) but,
in principle, not the functional relationships in E−, E+

and EP provided that approximating relationships are
characterised by different bias contributions.

An example of partitioning is shown in Figure 4a; in Figure
4b a change is detected in relationship f{(3,3)(1,3)}. We have

E+ = {f{(3,3)(3,1)}};
E− = {f{(1,3)(1,2)}};
EP = {f{(1,1)(2,1)}, f{(1,2)(2,3)}, f{(3,1)(2,2)}, f{(4,1)(2,3)},

f{(3,2)(4,2)}, f{(4,3)(4,2)}}.

Defined s̄ to be the index of the data window where the
HMM CDT detected a change, the proposed aggregation level

computes the normalized sum of the log-likelihoods, suitably
weighted according to (6), of the arcs in E+, E− and EP :

S+ =
1∑

E+ w{(i,j),(u,v)}

∑

E+

w{(i,j),(u,v)}l{(i,j),(u,v)}(s̄); (10)

S− =
1∑

E− w{(i,j),(u,v)}

∑

E−

w{(i,j),(u,v)}l{(i,j),(u,v)}(s̄); (11)

SP =
1∑

EP w{(i,j),(u,v)}

∑

EP

w{(i,j),(u,v)}l{(i,j),(u,v)}(s̄). (12)

The core of the cognitive aggregation level is thus the ability
to compute S+, S− and SP by exploiting information coming
from all the relationships of the weighted reduced dependency
graph. S+, S− and SP measure how the change detected in
the relationship f{(i,j)(v,u)} is perceived in other relationships.
If a fault affects sensor (i, j), S+ should decrease, while S−

and SP should not. Similarly, if a fault affects sensor (u, v),
S− should decrease, S+ and SP not. If a change in P occurs,
SP should decrease as well as S+ and S−.
To detect decreases in S+, S− and SP we rely on a simple

thresholding mechanism. The thresholds for S+, S− and SP

are computed as follows:

T+ =
1∑

E+ w{(i,j),(u,v)}

∑

E+

w{(i,j),(u,v)}Th,{(i,j),(u,v)}; (13)

T− =
1∑

E− w{(i,j),(u,v)}

∑

E−

w{(i,j),(u,v)}Th,{(i,j),(u,v)}; (14)

TP =
1∑

EP w{(i,j),(u,v)}

∑

EP

w{(i,j),(u,v)}Th,{(i,j),(u,v)}. (15)

where Th,{(i,j),(u,v)} is the minimum value assumed by the
log-likelihood in the training sequence for the HMM-CDT
of functional relationship f{(i,j),(u,v)} as described in the
previous section. Thresholds T P , T+ and T− can be scaled



7

by a coefficient factor c2 with 0 ≤ c2 ≤ 1 to increase the
robustness w.r.t. false positives. We suggest to select c2 > c1
since we want to detect decreases in the likelihood which did
not yet raised an alarm (and hence the likelihoods are above
their respective thresholds). In fact, if we consider c2 ≤ c1,
we would require that the weighted average of the likelihoods
computed in Eq. (10,11,12) decreases below the weighted
average of the thresholds for change detection Ths computed
in Eq. (13,14,15) but this is a nonsense since relationships in
E+, E− and EP did not detect a change yet.
To sum up, the cognitive aggregation level acts as follows:
• If SP decreases below threshold T P , a change in P is
identified;

• If SP > TP and S+ < T+ (or S− < T−), a fault in
sensor X(i,j) (or in sensor X(v,u)) is detected;

• If SP > TP and S+ > T+ and S− > T−, a false
positive induced by a model bias is detected.

If both S+ and S− are above their respective thresholds,
we can raise the alarm fault in either X(i,j) or X(v,u) but we
cannot isolate the affected sensor since not enough information
is available. Further analyses could thus be performed at the
sub-graph level by considering the relationships associated
with the sub-graph (or the sub-graphs) of the sensors affected
by the change. The cognitive aggregation level algorithm is
given in Algorithm 2.

Comments on real sensor networks
The effectiveness of the proposed cognitive fault diagnosis

system relies on the ability to exchange data among the units
of the distributed sensor network. This can be achieved with
a single, multi-hop or hybrid communication depending on
the nature of the deployment and the chosen technology. In
general, a centralized solution is taken, i.e., the FDS algorithm
is executed at the remote control room where all data are
sent and energy availability is not an issue. Differently, if
the reduced dependency graph can be partitioned into not
overlapping sub-networks then the FDS can be distributed
at the sub-network level and executed at the base station
(where local data instances are conveyed before activating
the remote communication). A further particular case is that
of isolated units. Here, only indirect functional relationships
can be created (unless sensor redundancy is envisaged) and
the FDS can be executed directly at the unit level (if enough
energy and computational power is available).
Not rarely, sensor units working in a real scenario are

characterized by the missing data issue, whose severity de-
pends on two distinct causes. Data missing can either be
induced by permanent/transient faults affecting the units or
electromagnetic disturbances preventing the data packet to
be delivered to the target (packet loss) within a best effort
communication protocol framework. When the missing of data
is associated with the communication aspect (e.g., noisy chan-
nel), a reliable communication protocol could be considered
to compensate the problem at the expenses of an increased
energy consumption and communication complexity overhead:
this solution might not be acceptable in limited resource-based
embedded systems.

The effect of transient faults either affecting the commu-
nication channel or the functionality of the units can be
partly – and often effectively – mitigated by resorting to
data reconstruction algorithms. This aspect must be taken
into account whenever the datastream is expected to suffer
from the missing data problem. In this case, reconstruction
techniques for distributed sensor networks, e.g., see [36], [37],
and [38], reconstruct the missing data by exploiting temporal
and spatial redundancies among sensors. Clearly, the operation
introduces an additional uncertainty on the missing data unless
the reconstruction mechanism is optimal. That said, the fault
diagnosis system presented here works in the parameter space
with parameters learned on a window of data. It is expected
that the impact on the parameter is negligible if the number of
missing data is much smaller than the size of the data window;
the opposite holds. However, we know exactly when the data
are missing, situation that, as per se, constitutes a fault. This a
priori information might suggest us to postpone the diagnosis
phase until a good window of data is available (at the expenses
of a delay in the detection of a potential change) or assign a
confidence to the outcome of the FDS also function of the
number of missing data.

V. EXPERIMENTS AND RESULTS

The aim of the experimental section is to show both the
detection and the recognition ability of the proposed FDS.
To achieve this goal we considered two different scenarios:
detection and recognition. The first refers to the case where
a change affecting a datastream must be detected as soon as
possible while maintaining under control false positives and
false negatives. The latter refers to the case where a sensor
fault or a change in P affects a sensor network and the
proposed FDS has to promptly detect and recognize it.
To evaluate the effectiveness of the proposed FDS we

considered both synthetic data and real measurements coming
from various sources. Section V-A presents the detection
experiments, while the recognition experiments are shown in
Section V-B.
The HMMs of the proposed CDT have been configured in a

fully connected topology (ergodic HMMs). The torch machine
learning framework [39] was used both to construct and
estimate the accuracy of the HMMs. The maximum number of
k-means iterations for cluster initialization was set to 50; the
Baum-Welch algorithm used to estimate the transition matrix
was bounded to 25 iterations with a threshold of 0.001 between
subsequent iterations. The number of explored states ranges
from 3 to 7 while the number of Gaussian components used
to build the GMM belongs to the {1, 2, 4, 8, 16, 32, 64, 128,
256, 512} set.
The main parameters of the cognitive FDS are detailed in

Table I; their values have been experimentally determined.
The SISO model (1) considered for the HMM-based CDTs

is an ARX model whose autoregressive and exogenous com-
ponent orders range from 1 to 6. The right order for time lags
and parameters are learned during the training phase.
In the detection scenario, the proposed FDS is compared

with the parity equation approach [1], [5], which inspects
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Symbol Value Description
γmin 0.5 Threshold on cross-correlation
c1 0.1 Correction factor for Th
c2 0.5 Correction factor for T+, T− and TP

TABLE I
THE PARAMETERS OF THE PROPOSED FDS.

the discrepancy between the process behavior and the pro-
cess model describing the nominal change-free behavior. The
threshold is set as the highest discrepancy on unseen training
data. When the discrepancy overcomes this threshold, a change
is detected.
Differently, in the recognition scenario, we compared the

proposed FDS with the K/N fusion method [21], commonly
used to combine decisions made by different sensors. An
environmental change is detected when at least K sensors
(over the total number of N sensors) detect a change. As
suggested in [21], K is fixed at N/2.
Five figures of merit have been defined to evaluate the

detection and the recognition accuracy:
• False positive index (FP): it counts the times a test detects
a change in the sequence when there it is not (percentage).

• False negative index (FN): it counts the times a change
is not detected when there it is (percentage).

• Detection Delay (DD): it measures the time delay in
detecting a change (number of samples).

• Change-in-the-environment recognition rate (CE): it mea-
sures the times a change in the environment is correctly
identified (percentage).

• Fault recognition rates (F): it measures the times a fault
is correctly identified (percentage).

• Isolation rates: it measures the times a fault is correctly
isolated, i.e., the sensor affected by the fault is correctly
identified (percentage).

A. Detection
This scenario, which examines the ability of the proposed

FDS to detect statistical changes in datastreams, encompasses
a synthetic dataset, a dataset coming from the Barcelona water
network simulator and a dataset coming from a monitoring
system working under real-world conditions for rock collapse
forecasting.
1) Synthetic Dataset: This experiment refers to data gen-

erated by ARX(2,2) model

Xi(t) = a1Xi(t− 1) + a2Xi(t− 2)+

b1Xj(t− 1) + b2Xj(t− 2) + e(t)

where a1 = 0.5, a2 = 0.2, b1 = 0.1, b2 = 0.3, and e(t) ∼
N(0,σ2) is a zero-mean Gaussian noise parameterized in its
variance σ2. The exogenous input Xj has been modeled as

Xj(k) = 5 sin(0.05k) + 3 sin(0.09k) + ε(k),

where ε(k) ∼ N(0, 0.012) is a zero-mean Gaussian noise
affecting the exogenous input.
Each experiment lasts 12000 samples with the first 4000

samples used for training. After 4000 samples an artificially

injected perturbation λ affects the coefficients of the ARX
model. We considered two types of perturbations, i.e., abrupt
changes and drifts, reflecting the occurrence of a permanent
or transient fault or a smooth aging effect in the sensors,
respectively. In case of abrupt changes, the parameters of the
ARX model suddenly change from θ = {a1, a2, b1, b2} to
θλ = {a1(1 + λ), a2(1 + λ), b1(1 + λ), b2(1 + λ)}. In case
of drift changes, the parameters of the ARX model slowly
change from θ to θλ, which is now reached at the end of
the experiments. The values of lambda considered in the
experiments are λ = {0.03, 0.05, 0.07, 1}.
To evaluate the performance of the proposed method

we considered different strengths for the noise σ =
{0.01, 0.02, 0.04, 0.07, 0.1}. Simulation results are averaged
over 250 runs.
The results of synthetic data for the abrupt perturbation case

are shown in Table II. We see that the FP rate and the delay
are increasing with the noise level. As expected, the FN rate
reduces as λ increases. Similarly, for a given noise level σ,
the mean delay reduces as λ increases. We observe that even
in highly noisy conditions, the proposed solution guarantees
high detection accuracy and low detection delays. The parity
equation approach provides lower performances both in terms
of detection accuracy and delay. In particular, the proposed
method always guarantees lower mean delays, much lower
FN rates (at the expenses of a slightly higher FP rates at low
σs). The results of the drift type of change presented in Table
III are in line with those of the abrupt change ones.
2) Barcelona water network simulator: This dataset con-

sists in simulated data of the water distribution network of
the city of Barcelona [40]. While the real network is quite
complex (200 district metering areas and 400 control points),
the network simulator provides flow meter data with respect to
two related in time pumps for a time period of approximately
one month. Eight types of faults are artificially induced in
the second pump. The ability of the FDS to detect faults is
tested by conducting an experiment for each type of fault. Each
experiment lasts 1488 samples: the first 744 samples represent
the normal situation, while in the remaining 744 samples the
second pump is affected by a fault. Figure 5 shows the 8
datasets for the second pump.
The proposed FDS is trained with 500 data samples to

model the nominal state and 100 to determine the threshold.
We report that all eight faults were correctly identified as

faults by the proposed FDS with no occurrences of false
positives or false negatives. The types of faults along with
the respective detection delays are given in Table IV. The
window of the CDT has length NT = 40 samples. The
proposed FDS detects each category of faults with a relatively
small latency. Differently, the parity equation method provides
higher detection delays and fails to detect two types of faults
(negative offset abrupt additive and negative offset incipient
additive).
3) Rock collapse forecasting system: This experiment refers

to a real-world dataset provided by a real-time monitoring
system for rock fall forecasting [41] designed by our group
and deployed in the Alps.
Here we consider measurements coming from a novel
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Proposed approach Parity equation method

σ of the noise λ FP (%) FN (%) Delay FP (%) FN (%) Delay
(# of samples) (# of samples)

0.01
0.03 2.50 4.77 8 0 33.84 61.12
0.05 2.50 0 8 0 31.12 60.67
0.07 2.50 0 8 0 31.12 60
0.1 2.50 0 8 0 28.09 59.04

0.02
0.03 2.78 8.59 8 0 53.46 63
0.05 2.78 0 8 0 51.93 61.63
0.07 2.78 0 8 0 51.27 61.28
0.1 2.78 0 8 0 50.85 61.45

0.04
0.03 8.52 7.48 9.8 2.56 53.53 59.13
0.05 8.52 0 9 2.56 51.91 57.63
0.07 8.52 0 8.7 2.56 51.28 61.48
0.1 8.52 0 8.6 2.56 50.86 61.52

0.07

0.03 9.82 8.46 12 13.43 54.32 48.83
0.05 9.82 0 10.9 13.43 51.92 52.95
0.07 9.82 0 9.7 13.43 51.29 52.68
0.1 9.82 0 9 13.43 50.83 51.75

0.1
0.03 12.28 6.86 16 26.46 54.97 36.03
0.05 12.28 0 15.7 26.46 52.07 43.93
0.07 12.28 0 15.1 26.46 51.27 35.13
0.1 12.28 0 15 26.46 50.84 31.45

TABLE II
Application D1 - Abrupt case - DETECTION RESULTS OF THE PARITY EQUATION APPROACH AND THE PROPOSED CHANGE DETECTION METHODS.

Proposed approach Parity equation method

σ of the noise Lambda FP (%) FN (%) Delay FP (%) FN (%) Delay
(# of samples) (# of samples)

0.01 0.1 1.02 0 12 0.72 36.74 48.3
0.02 0.1 2.19 0.2 12 2.59 41.8 49.3
0.04 0.1 7.92 1.69 14 4.19 44.75 51
0.07 0.1 10.1 4.4 18.1 13.47 48.73 53.6
0.1 0.1 12.34 5.75 21.46 24.45 49.5 55.8

TABLE III
Application D1 - Drift case - DETECTION RESULTS OF THE PARITY EQUATION APPROACH AND THE PROPOSED CHANGE DETECTION METHODS.

Fault type Proposed FDS Parity equation
DD (Samples) DD (Samples)

Freezing abrupt additive 12 42
Freezing incipient 12 44

Negative offset abrupt additive 34 -
Negative offset incipient additive 56 -
Positive drift abrupt additive 10 21
Positive drift incipient additive 12 20

Noise abrupt additive 11 275
Noise incipient additive 12 280

TABLE IV
THE DETECTION DELAYS FOR EACH FAULT TYPE IN THE BARCELONA

WATER DISTRIBUTION NETWORK TESTBED.

generation of intelligent clinometer sensors (see Fig. 6) which
have an internal thermal sensor to correct and compensate
on-line the measurements. The goal is to exploit the indirect
relationship between the clinometer and temperature sensors
to detect faults or changes in P .
In particular, we considered the temperature and clinometer

measurements recorded from August 1st 2011 until October
31th 2011. The sampling rate of each sensor is one sample
per hour. The dataset is composed of 2100 samples, the first
500 samples composing the training sequence, the next 100
samples used to compute the threshold and the remaining sam-
ples constitute the test set. We considered an ARX(1,2) model

Temperature 
sensor

Clinometer 
sensor

Fig. 6. An example of a intelligent clinometer sensor working in the rock
collapse forecasting system deployed in the Alps.

family as it provides the best reconstruction performance. The
window of the CDT has length NT = 100 samples.
Figure 7 presents data and results of both the proposed

HMM-based CDT and the parity equation approach. In par-
ticular, the upper two subfigures show the temperature and
the clinometer measurements while the bottom two show the
detections using the HMM-based CDT and residual thresh-
olding method. We observe that the flat part of the signal at
about sample 1300 (due to a communication fault) is correctly
detected. Interestingly, the detection around sample 1500 can
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Fig. 5. The 8 datasets of the faulty pump of the Barcelona Water Network simulator. The red dotted lines represent the time instances that the fault affects
the pump and the green dashed one represents the time instance a fault is detected by the proposed FDS.

be associated to a transient false detection induced by model
bias, while the detections at the end of the experiment can be
associated with a change in P . These considerations will be
confirmed by the results presented in the recognition scenario
in which both the communication fault and the change in the
environment will be perceived by the cognitive level. On the
contrary the residual based method produces a false positive
alarm at value 500 and it detects the environmental changes at
the end of the sequence but it fails to detect the communication
error.

B. Recognition
We consider a synthetic dataset, and datasets coming from

a rock collapse forecasting system and the Great Barrier Reef
Ocean Observing System.
1) Synthetic datasets: The synthetic experiment refers to a

network composed of N = 20 units. Datastreams of the first
ten units are modelled as

Xj(t) = u1 sin(u2t) + u3 sin(u4t) + ε(t),

where 1 ≤ j ≤ 10, u1, u2, u3 and u4 are randomly selected
in the [4.5, 5.5], [0.04, 0.06], [2.5, 3.5], [0.08, 0.1] intervals,
respectively, and ε(t) ∼ N(0, 0.012) is a zero-mean Gaussian
noise.
The remaining 10 units provide data according to models

X10+j(t) = a1X10+j(t− 1) + a2X10+j(t− 2)+

b1Xj(t− 1) + b2Xj(t− 2) + e(t)

where a1, a2, b1, b2 are randomly selected in intervals
[0.45, 0.55], [0.15, 0.25], [0.05, 0.15], [0.25, 0.35], respectively
and e(t) ∼ N(0,σ2) is a zero-mean Gaussian noise of
variance σ2. Thus, to generate data we impose 10 relationships
where units Xj , 1 ≤ j ≤ 10 represent the inputs, while units
Xj , 11 ≤ j ≤ 20 represent the outputs. The data generation
graph is depicted in Fig. 8, while the reduced dependency
graph GR is fully connected and is omitted for brevity.
Each experiment lasts 16000 samples with the first 4000

samples used for training the HMMs. The following 4000
samples are used by each relationship to learn its own
threshold (Th). At sample 12000 a perturbation λ affecting
the coefficients of the ARX model is artificially injected.
Experiments are averaged over 200 runs.
When an environmental change is considered, the perturba-

tion λ affects all relationships of the data generation graph.
We consider both abrupt and drift perturbations to model
sudden or slowly drifting changes, respectively. In case of
abrupt changes, the parameters of the ARX model move from
θ = {a1, a2, b1, b2} to θλ = {a1(1 + λ), a2(1 + λ), b1(1 +
λ), b2(1 + λ)}. In case of a drift, the parameters of the
ARX model change slowly from θ to θλ, which is reached
at the end of the experiment. The values of lambda are
λ = {0.01, 0.05, 1}.
On the contrary, when a fault is considered, only one

sensor is affected by the change under the single fault case
assumption. The fault is inject in an a-priori selected sensor
(i.e., sensor #20) and its values were artificially increased as
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Proposed approach K/N equation method
σ of the noise λ FP (%) FN (%) DD CE FP (%) FN (%) DD CE

(Samples) (%) (Samples) (%)

A
br
up
t

3
0.01 1.7 1.7 29 94 2.1 10.8 31.92 25
0.05 1.7 1.6 27.9 94 2.1 11 29.2 28
0.1 1.7 1.5 25.9 95 2.1 11.3 26.6 30

4
0.01 2.6 0.7 29.4 95 2.7 16.3 42.9 31
0.05 2.6 0.6 27.4 97 2.7 16.3 40.9 32
0.1 2.6 0.5 26.4 98 2.7 16.3 38 32

5
0.01 3.8 0.5 49.9 91 3.9 16 129 31
0.05 3.8 0.4 44.2 94 3.9 14.3 117.4 37
0.1 3.8 0.3 40 95 3.9 13.2 113.8 32

6
0.01 4.2 0.8 94 92 6.1 21 215 29
0.05 4.2 0.6 91 93 6.1 20 206 26
0.1 4.2 0.4 92 91 6.1 19 198 28

D
rif
t 3 0.1 2.2 1.7 29 95 1.8 8.5 31.1 29

4 0.1 2.5 1.1 29.5 93 1.9 11.7 42.8 31
5 0.1 3.1 1.5 49.7 91 2.1 14 128.5 27.5
6 0.1 3.7 1.6 95.2 90 2.5 17.2 215.3 29

TABLE V
CHANGE IN THE ENVIRONMENT (ABRUPT AND DRIFT CHANGES): THE PROPOSED FDS AND THEK/N APPROACH.

Proposed approach K/N equation method
σ of the noise λ FP (%) FN (%) DD F Isolation FP (%) FN (%) DD F

(Samples) (%) (%) (Samples) (%)

A
br
up
t

3
0.01 0.7 0 24.2 100 100 3.4 0.5 57 99
0.05 0.7 0 22 100 100 3.4 0.3 53 99
0.1 0.7 0 21 100 100 3.4 0.2 50 99

4
0.01 1.2 0 33 100 100 5.5 1.5 77 99
0.05 1.2 0 29 100 100 5.5 1.3 71 100
0.1 1.2 0 24 100 100 5.5 1.2 68 99

5
0.01 2.8 0 53 100 100 8.1 3 95 100
0.05 2.8 0 49 100 100 8.1 2.5 87 99
0.1 2.8 0 44 100 100 8.1 1.7 82 99

6
0.01 3.2 0 80 100 100 13.4 6.7 126 99
0.05 3.2 0 78 100 100 13.4 6.5 110 100
0.1 3.2 0 75 100 100 13.4 6.4 98 100

D
rif
t 3 0.1 1.3 0 24.2 100 100 2.5 2.4 57 100

4 0.1 2.1 0 33 100 100 3.8 3.6 77 100
5 0.1 3.4 0 53 100 100 4.9 4.9 95 100
6 0.1 4.2 0 80 100 100 5.6 6.4 126 100

TABLE VI
FAULT (ABRUPT AND DRIFT CHANGES): THE PROPOSED FDS AND THEK/N APPROACH.

Xj(t) = Xj(t)(1 + λ) with λ = {0.01, 0.05, 0.1}. Even in
this case we considered both abrupt and drift fault cases.
To evaluate the performance of the proposed method we

consider the following values of σ = {3, 4, 5, 6}. Results are
averaged over 100 runs for each λ and noise level σ.
Results presented in Table V and VI show both the prompt-

ness in detecting the changes and the ability to discriminate
between faults and changes in the environment by the proposed
FDS. In particular, the FDS guarantees lower FP, FN, DD and
higher recognition rates w.r.t. the K/N approach.
As expected, FNs and DD decrease with the magnitude of

the change λ, while FPs increase with the standard deviation
of the noise.
The proposed FDS guarantees effectiveness to correctly

discriminate between changes in the environment and faults. In
particular, changes in the environment are correctly recognized
in the 90-95% of the experiments, while faults are correctly
recognized in all cases. Moreover, in case of faults affecting
the network the proposed FDS is able to correctly isolate
the faulty sensor in all the experiments. The K/N approach
is very ineffective when the change affects the environment.
The reason of this behavior is due to the fact that the K/N
approach requires at least K units detecting simultaneously a

change to raise “a detection in the environment” alarm.
Simulation results of the drift case are in line with those of

the abrupt change one. Higher FNs and DDs are justified by
the smooth effect of the drift change on the parameters of the
considered ARX model.
2) Rock collapse forecasting: This experiment refers to

the real-world rock collapse monitoring system described in
Section V-A3. Here, we consider a system composed of three
multi-sensor sensing units. Among other sensors these units
are endowed with intelligent clinometer sensors. The indirect
relationship between clinometer and temperature sensors are
exploited.
All the 30 relationships in the network have cross-

correlation larger than 0.5. For this reason, the reduced de-
pendency graph GR coincides with G and is fully connected.
The results of the proposed FDS, shown in Fig. 9, are

particularly interesting since they show two changes in the
environment. The change detected approximately between
sample 1250 and 1350 is particularly interesting since there
the gateway of the monitoring systems was affected by a
communication problem inducing a stuck-at fault in the datas-
treams gathered by the sensing units. This problem has been
correctly recognized by the proposed FDS as a change in
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Fig. 7. The application of the proposed method on real-world data coming
from the rock collapse deployment. From top to bottom: (a) internal sensor
temperature measurements, (b) clinometer measurements, (c) HMM-based
CDT detections and (d) Residual based detections.

the environment since all the units have been affected by
the change. Interestingly, a communication problem inducing
changes in all the network units can be associated with a
change in the environment: no much more can be done here.
The specific situation can be parallelized with the missing data
challenge, where the system provides constant-valued data as
long as the malfunction lasts. The second detection is labelled
as a temporary environmental change and is in line with the
detection experiment described in Section V-A3.
The K/N approach does not detect changes in the en-

vironment. This result emphasizes the limits of the K/N
approach which suffers from the fact that it requires at least
K relationships (i.e., in this case 15 relationships) to detect a
change.
3) Great Barrier Reef Ocean Observing System (GBROOS)

dataset: The GBROOS dataset refers to the temperature
measurements of six units belonging to the Great Barrier
Reef Ocean Observation System [42]. The considered units
are deployed at the Heron Island, Queensland, Australia and
the acquisition campaign ranges from February 21 to March
22, 2009. Interestingly, on March 9, 2009 a Category-4 cyclone
affected the deployment area. The dataset lasts approximately
8400 samples and the cyclone occurs at about sample 4900.
The sampling period is 5 mins.
Here the training sequence is composed of 3000 samples
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Fig. 8. The data generation graph of the recognition experiment on synthetic
data.

and the next 500 samples are used to compute the threshold.
The reduced dependency graph is a fully-connected graph

since all 30 relationships produced cross-correlation higher
than γmin. The results of the application of the proposed FDS
on the GBROSS dataset are shown in Figure 10. We observe
that
1) the proposed FDS is correctly able to detect the occur-
rence of a change in the environment approximately at
sample 5000. Interestingly, the Australian Institute of
Marine Science (AIMS) asserts that the cyclone had not
an immediate impact on the air temperature [42] and
this might be the reason of the delay in the detection
of the change in the environment. Obviously, the aim
of the proposed system is not to detect the presence
of a cyclone (which is quite evident by itself) but to
detect variations in the relationships within a set of
sensors. The GBROSS dataset well suits our needs since
it provides both real measurements and a ground truth
of an occurred change.

2) the change in the environment is only transient, as shown
in Figure 10(a). This coincides with the evaluation of
AIMS which indicates that the effect of the cyclone on
the marine environment is only temporary and that the
atmospheric conditions return to normal values within
16 hours [42] after the transit of the cyclone.

Even in this case the K/N approach does not provide
satisfactory results since it never happened that at least K (15)
relationships raised an alarm at the same time.

VI. CONCLUSIONS
The paper introduces a cognitive FDS with novelties in

1) the design of a graph-based representation of the spa-
tial/temporal relationships among measurements in a sensor
network and, 2) a two-level hierarchical FDS exploiting such
temporal and spatial relationships. The lower level of the
FDS relies on a HMM-CDT to promptly detect changes in a
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Fig. 9. Results on the data recorded by the rock collapse forecasting system
deployed on the Alps. The two upper plots show the temperature and the
clinometer measurements, while the lower plots presents the detection of
environmental changes (1: detection, 0: not detection) based on the proposed
FDS and the K/N method.

relationship between two measurement datastreams, while the
upper level exploits the graph-based functional representation
of the network to discriminate among faults, changes in the
environment and false positives induced by model bias. The
effectiveness of the proposed solution has been evaluated on
both synthetic and real datasets.
The FDS, which is here presented with the detection and

isolation phases, can be extended to consider also the identi-
fication and accommodation ones.
In fact, a set of HMMs can be trained to identify the

occurrence of a fault belonging to a-priori available fault
dictionary. Once detected and verified by the upper level, the
FDS could select the fault from the fault dictionary associated
with the HMM showing the largest likelihood value.
The accommodation phase aims at reducing the effects of a

change and adapting the system to the new working conditions.
In case of faults, the affected sensor is removed from the
reduced dependency graph and, possibly, substituted with its
virtual representation (by exploiting the temporal and spatial
redundancies with the other sensors). In case of changes in
the environment, the whole network representation (i.e., the
reduced dependency graph and the HMMs) becomes obsolete
and must be retrained from up-to-date data, thus making the
FDS adaptive over time. In case of fault detection induced by
model bias, the corresponding HMM-CDT could be trained
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Fig. 10. Results on the GBROOS dataset. The upper plot presents the
temperature measurements of the six units. The following plots present
detection of environmental changes (1: detection, 0: not detection) based on
the proposed FDS and the K/N method.

on a larger dataset.
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