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Just-in-Time Adaptive Classifiers—Part I:
Detecting Nonstationary Changes

Cesare Alippi, Fellow, IEEE, and Manuel Roveri

Abstract—The stationarity requirement for the process gener-
ating the data is a common assumption in classifiers’ design. When
such hypothesis does not hold, e.g., in applications affected by aging
effects, drifts, deviations, and faults, classifiers must react just in
time, i.e., exactly when needed, to track the process evolution. The
first step in designing effective just-in-time classifiers requires de-
tection of the temporal instant associated with the process change,
and the second one needs an update of the knowledge base used
by the classification system to track the process evolution. This
paper addresses the change detection aspect leaving the design of
just-in-time adaptive classification systems to a companion paper.
Two completely automatic tests for detecting nonstationarity phe-
nomena are suggested, which neither require a priori information
nor assumptions about the process generating the data. In partic-
ular, an effective computational intelligence-inspired test is pro-
vided to deal with multidimensional situations, a scenario where
traditional change detection methods are generally not applicable
or scarcely effective.

Index Terms—Intelligent systems, learning systems, neural net-
works, pattern classification.
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I. INTRODUCTION

A SSESSING the stationarity of a data generating process,
i.e., verifying whether drifts, abrupt changes, smooth

deviations, and aging effects have affected the data-generating
mechanism or not, is a key issue in industrial, environmental,
and medical applications [1]. Monitoring over time the validity
of the stationary hypothesis allows the designer to do the fol-
lowing: 1) verifying if the stationarity hypothesis holds (many
applications, e.g., classifier design, system identification, and
fault detection are designed under the assumption that the
process is stationary); 2) taking actions, e.g., by updating the
classification systems to track the system evolution.1

The problem of assessing the stationarity hypothesis can be
addressed with three main approaches: data driven, analytical,
or knowledge based [1]. A data-driven approach directly in-
spects data coming from the process and assumes that the avail-
able data set is large enough to assess the validity of the sta-
tionarity hypothesis with large confidence [2], [3]. This solu-
tion guarantees a good drift detection ability without requiring
any a priori information about the process under investigation.
The analytical modality assumes that a mathematical descrip-
tion of the process generating the data is available: only few
data are hence required to assess the hypothesis [4], [5]. The
knowledge-based modality assumes instead that some a priori
information about the process (but not the model) is available,
e.g., derived from samples; in this class, we have causal analysis
and expert systems [4], [6], [7].

We believe that an effective stationarity assessment test
should be accurate and flexible enough to deal with a large class
of applications without requiring any a priori information, as
they are hardly available in the real world. As such, here, a
data-driven approach, which assumes that no critical a priori
information is available, is suggested.

In the neural network community, identification of the time
instant associated with the loss in stationarity allows the de-
signer to take actions, e.g., by updating the network weights
to track the process evolution [9], [10], retraining the classifier
[11], [12] exactly when needed, detecting or giving a diagnosis

1This second aspect is addressed in the companion paper [8].
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about the presence of faults in the neural-network-based solu-
tion [13], [14], and assessing the effectiveness of adaptive pre-
processing techniques designed for nonstationarity applications
[15], [16].

A relatively large literature addresses classifiers in specific
nonstationary applications, e.g., [17], [18] with detection of the
process change implicitly assumed as known (here, a mecha-
nism for detecting a change occurrence is provided hence com-
pleting their analysis). Conversely, if the change detection test
asserts that the process remains stationary, supervised informa-
tion coming from the field can be fully exploited and integrated
into consistent neural network classifiers to asymptotically im-
prove accuracy as delineated by the theory [19].

The most common data-driven techniques for change detec-
tion are parametric and nonparametric statistical tests [1], [2].
Simple parametric techniques for testing a signal change—or
hypothesis—are the student t-test and the Fisher f-test [20],
[21], which address changes in mean and variance, respec-
tively. More articulated analyses, e.g., based on regression
techniques [22], need to be considered to contemporarily deal
with mean and variance (but are weakly effective in detecting
small changes). Parametric tests generally require availability
(or an estimate) of the probability density functions of the
process generating the data before and after the change and/or
information about the nature of the drift [20], [21]. Differently,
nonparametric tests are somehow more general because they
do not require strong a priori information [21], [23]. The
Mann–Whitney U-test for independent samples [24] (which
relies on the possibility to rank two independent samples of
observations) and the Wilcoxon signed-rank test for related
samples [25] (which can be considered as a nonparametric
alternative to the t-test) are nonparametric tests originally
designed for detecting a single point change (which also rep-
resents their main limit). The Mann–Kendall [26] (designed to
analyze climatic changes) and the CUmulative SUM (CUSUM)
[27], [28] (developed in the system control community to detect
structural changes) nonparametric tests are particularly suitable
in sequential analysis. In particular, CUSUM has been suc-
cessfully used in several diversified applications such as fault
detection, onset detection in seismic signal processing [29],
[30], and changes in mechanical systems [31], [32]; it provides
a relative simplicity, a graphical interpretation of results and
the ability to detect unusual patterns whereas Mann–Kendall is
characterized by a low computational complexity.

Another general, pdf-free method for detecting changes in dy-
namical systems has been suggested in [33] and [34]. Interest-
ingly, the author suggests a heuristics to identify the required
parameters hence aiming at a first automatic identification of
the test parameters.

Change detection issues have also some affinity with design
for testability, e.g., refer to [35]–[37]; however, a comprehensive
analysis is outside the goal of this paper.

All traditional tests generally require a design-time configu-
ration phase to fix the test parameters (e.g., Mann–Kendall re-
quires a significance level for the test while CUSUM needs to fix
some thresholds to detect changes); such parameters are iden-
tified by exploiting a priori information or through a trial-and-
error approach.

The aim of this paper is to develop a novel, general, a priori
information-free, automatic change detection test: general in
the sense that it only requires temporal independence among
data, and automatic because the designer can easily configure
the needed parameters at design time. We paid attention to the
computational complexity of the test to grant real-time execu-
tion also in embedded systems such as wireless sensor networks,
generally characterized by energy constraints and low compu-
tational abilities. The results of the study are two CUSUM-
inspired tests, both effective in detecting abrupt changes and
smooth drifts, differentiating themselves on approach, validity,
and computational complexity.

The structure of this paper is as follows. Section II presents
the traditional CUSUM test and the suggested extended ap-
proach to CUSUM. Section III addresses the development
of a computational intelligence-based test for signal change
detection. Experimental results are finally given in Section IV.

II. EXTENDED CUSUM TEST

Let be a stochastic process producing, over time, the
sequence , , of scalar, real, inde-
pendent and identically distributed (i.i.d.) random samples
subject to pdf parameterized in the parameter vector

. Assume that changes its statistical
behavior at unknown time without modifying its pdf model
family; under such hypothesis, the change in can be modeled
as a parameter transition from to .

To evaluate the discrepancy between the two pdfs at time ,
CUSUM requires first computation of the cumulative sum of the
log–likelihood ratio

and, then, the minimum of the sequence .

Traditional CUSUM identifies a change in at time when the
difference overcomes a given threshold .

CUSUM is rather effective in detecting changes but it requires
availability of the pdf and parameters , , at design time,
information which is rarely available (in the best case, parame-
ters can be estimated through a trial-and-error approach, e.g., by
knowing that, following a drift or a fault, the process will move
from into a new working point ).

By assuming that samples are i.i.d., is perfectly di-
visible by , and is sufficiently large to grant validity of the
central limit theorem, a pdf-free CUSUM test can be derived. In
particular, random variable

(1)

is ruled by a Gaussian pdf with mean and variance parameters
which can be estimated on the transformed se-

quence , , and provide the null
hypothesis requested by the traditional
CUSUM. In different words, the suggested pdf-free mechanism
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of the extended CUSUM derives from the central limit theorem
providing, for any process generating the data satisfying the
i.i.d. hypothesis, a canonical Gaussian pdf family.

To complete the test, the designer has to provide the alter-
native hypothesis which, to address any
type of nonstationarity changes, can be defined as not being in

, in contrast to being in . The “not being in ” statement
must be intended in statistical terms by developing a confidence
neighborhood for . Such a neighborhood can be generated by
considering the confidence intervals
and for and , where is a confidence param-
eter.

Differently from traditional CUSUM, the method is not
aiming at estimating the alternative hypothesis but, instead,
at defining a zone of the hypothesis space that represents the
“not being in ” situation.

By assuming that can be approximated with the ideal one
(i.e., is sufficiently large to allow the designer for consid-
ering the estimated parameters instead of the real ones), the al-
ternative hypothesis can be obtained by
identifying a neighborhood confidence for [20]. In partic-
ular, parameter becomes

(2)

where and are the normal and the chi-square distributions,
respectively, and is the sensitivity of the test. Likewise, the
confidence interval extremes for the variance are [20]

(3)

The presence of in (2) implies that we can both identify a
change and its monotonical behavior (increasing , decreasing

). To detect both changes, the designer has to configure and
run two tests, one for detecting the increasing change and the
other for detecting the decreasing change in . The same note
holds for the variance (3), where we have two possible values
for . Additional hypotheses for can be
configured by considering combinations of , , ,
and .

By increasing , the test is less sensitive to changes affecting
; conversely, by decreasing , the test becomes very sensitive

to small changes.
Once parameters and have been set, we compute

and for ; the threshold to be used can be
estimated as the maximum in sequence

(4)

Once , , and are estimated, the traditional CUSUM
test becomes operational: the test detects a change in at time

when fresh incoming data, transformed according to (1),
provide a above threshold .

Results, here suggested for a monodimensional signal, can
be suitably extended to cover multidimensional cases. Such an
extension will be provided in Section III.

III. COMPUTATIONAL INTELLIGENCE-BASED CUSUM TEST

The components of can be intended as features used by
the extended CUSUM to detect a nonstationarity condition. As
such, in search for a more expressive, robust, and effective test
embedded to the application, it is timely to think of extending
basic features with a further set extracted from the
signal(s). Additional features can be extracted from input data
by using suitable kernels (e.g., see [38]) and/or by considering
features suggested in the specific change detection literature.
In other words, designers can consider their favorite features to
construct a new nonstationarity detection test.

In the following, the operative framework, notations and hy-
potheses are those leading to the extended CUSUM, i.e., inputs

are i.i.d., here with extended to the -dimensional
case.

For each input, we compute mean , standard deviation ,
features derived from the pdf and the cumulative density func-
tion (cdf), as well as features inspired by Mann–Kendall (indices

to ) and CUSUM (indices to )

pdf pdf

cdf cdf

(5)

where and
represent the parameter configuration sequence and the oper-
ational one, respectively; and denote the th compo-
nents of and ; is the sign function; and pdf and cdf
are the estimated probability and cumulative density functions,
respectively.

In order to consider information at a group level, we also en-
visage features obtained by correlating any two features of (5)
through the linear correlation operator

(6)
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To sum up, there are features from traditional change de-
tection tests, from Mann–Kendall, from CUSUM, and

features derived from the correlation operator for a total
of features. Because a supervised feature selection
phase cannot be considered to reduce the complexity of the input
space, a principal component analysis (PCA) technique is sug-
gested which, applied to vector , provides a reduced feature
vector . The number of considered eigenvectors can
be empirically identified by removing those eigenvalues whose
sum is below a threshold, e.g., one thousandth of the sum of the
others.

The is then used to configure the parameters of the
test and, because the pdf of is not available, we apply
the same framework delineated in Section II for the extended
CUSUM. In particular, by averaging each th component of

as

(7)

and, by invoking the central limit theorem, transformed
vector follows a multivariate Gaussian distribution of
mean and covariance matrix .

Once estimated, mean and covariance matrix of
constitute the null reference hypothesis
needed by the change detection test. The alternative hypothesis

follows by considering a
confidence interval for the sample mean and the covariance ma-
trix of . In particular, in analogy with (2) and (3), we have

(8)

(9)

where, again, references the sensitivity parameter of the test

and is the vector containing the square root of di-

agonal elements of . Finally, we compute , , and
on . The maximum value of in the configuration se-

quence is used as threshold value ; the ex-

tended CUSUM test can now be applied also to multidimen-
sional problems.

A. Geometrical Displacement of in the Hypothesis Space

Effectiveness of the computational intelligence-based
CUSUM (CI-CUSUM) test requires selection of the most
appropriate alternative hypotheses ’s. Because each cor-
responds to a different test, we have to tradeoff computational
complexity of the test phase with its performance (generation of
false positive and negative in change detection). In fact, while
generation of the alternative hypotheses in the extended

CUSUM can provide four possible alternative hypotheses, the
multidimensional nature of would generate an expo-
nential number of alternative hypotheses in the dimension of

. This NP-hard computational problem is less critical than
it might appear as experienced in real applications where rarely
the number of features exceeds five (inducing 32 alternative
hypotheses) thanks to PCA. Moreover, because features
have been designed to generate positive increments in response
to changes in the process, only alternative hypotheses in (8)
and (9) inducing a positive increment of are of interest.

Which alternative hypothesis should the designer consider in
a large hypothesis space? If a priori information about the pos-
sible change in the process is available, i.e., the trajectory of

induced by the change in the feature space is known,
ad hoc tests can be designed. Conversely, when such an in-
formation is not available—which is generally the case—four
sets of configurations can be suggested as candidates to the al-
ternative hypothesis. By defining false positive and false nega-
tive as the times, a test detects a change in the sequence when
the change is not there and it does not detect a change when
the change is there, and by denoting the size of the hypoth-
esis vector with , the increase of the th param-
eter in computed according to
(8) and (9) with , and the null hypothesis with

, the suggested four sets of configura-
tions for are as follows.

• Configuration #1 is composed by a single alternative hy-
pothesis representing the situation where all components
in increase

. For its nature, the solution guarantees
the lowest false positive rate (among the suggested config-
urations), but it might suffer from the presence of a high
false negative one. The computational complexity of the
test configuration does not depend on .

• Configuration #2 contains configuration #1 and all test
configurations characterized by a null increment only in
a generic component of the vector. The complexity of
the test solution is , linear in . This configura-
tion improves over the previous one by reducing the false
negative rate.

• Configuration #3 starts from the null hypothesis and in-
creases only one component at time. The result is a set of

alternative hypotheses. This configuration guarantees the
lowest false negative rate compared to the proposed config-
urations but it might suffers from false positives due to the
curse of dimensionality.

• Configuration #4 considers all possible combinations
of the parameters of . Even if this approach is in-

tuitively justified by the need to consider all possible varia-
tions, the exponential computational complexity
makes this solution intractable for large ’s.

Configuration #2 is an appealing solution for most of appli-
cations. We experimentally found it provides a convenient com-
promise between change detection performance and computa-
tional complexity. The designers can select from configuration
#1 to address low false positive rates or configuration #3 for low
false negative ones. Fig. 1 shows the four candidate configura-
tions in the case.
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Fig. 1. Four CI-CUSUM configuration, � = 3.

IV. EXPERIMENTAL SECTION: ASSESSING THE

CHANGE DETECTION TESTS

To validate the effectiveness of the suggested nonstationary
detection tests, we considered six applications, two of which
(D1 and D3) are simulated and four (D2, D4, D5, and D6) are
coming from real experiments. Obtained results are compared
and contrasted with the ones provided by traditional CUSUM
and Mann–Kendall whenever such methods can be applied
(CUSUMrequires thepdfof theprocessgenerating thedatawhile
Mann–Kendall canonly beapplied to monodimensional signals).

• Application D1 refers to a simple monodimensional
process ruled by a known Gaussian pdf. The process lasts
5000 samples; a nonspectral perturbation affecting the
mean value (which changes from to ,
5% perturbation, ) is injected after 2500 samples.
The CUSUM test was configured by using the available a
priori information and .

• Application D2 coincides with the SATIMAGE benchmark
[39], i.e., classification of Landsat Multispectral Scanner
images in seven classes (6435 samples of 36 features). A
feedforward neural network classifier was considered as
suggested in [40] (single hidden layer of six neurons and
one output neuron). The change affects the neural network
weights at sample 4000.

• Application D3 refers to self-assembled monolayer (SAM)
[41], [42] gas sensors. The model of the sensor resistance
(to be considered unknown to all change detection tests) is
in stationary conditions

where and are real numbers, is the partial pressure
of the th gas, is a physics constant, and is the

sensor resistance measured in a reference gas. The appli-
cation considers a set of five SAM sensors, two features
(the sensor measurement and its derivative) extracted from
each signal generating a ten-dimensional feature vector to
be inspected for variations (sensors differ only for the pro-
duction process). The parameter affected by the variation
is for each sensor; 10 000 samples coming from 150
different simulated acquisitions (pseudorandom binary sig-
nals, i.e., steps with random amplitudes and time duration)
were considered; changes started at sample 5000.

• Application D4 refers to a monitoring application; signals
come from a set of photodiodes receiving X-rays which, in
similar absorbing conditions, show a group behavior. Here,
the goal is to recognize nonstationary behaviors of the pho-
todiode X-ray source system in subsequent several days ac-
quisitions by inspecting 16 photodiodes (11 680 samples
per experiment).

• Data Set D5 refers to the physiological data benchmark
suggested in [43]. The data set contains two measurements
[the respiratory signal (RPS) and the electrooculography
signal (EOG)] retrieved from naps of 15 healthy people.
According to neurophysiologists, the afternoon nap repre-
sents a “switch into a different mode” for the neuronal ac-
tivity, i.e., the cerebral activity commutes from a stationary
condition into a new stationary state. The aim of the exper-
iment is to detect the state change by exploiting the respi-
ratory and the electroencephalogram signals (from 9650 to
19 060 samples per experiment).

• Data Set D6 refers to the Tennessee Eastman benchmark ad-
dressing the control of a complete chemical plant [44]. The
data set [45], which includes 41 observation variables, con-
sists of 22 different simulation runs (one fault-free case and
21 fault-affected cases). Each run addresses 48 hours with
the fault affecting the chemical plant induced at hour 8.

Whenever the process was known, i.e., in applications D1 and
D2, both abrupt and drift changes were considered. For abrupt
changes, a multiplicative perturbation model was applied, which
requires that the generic parameter is affected by a perturba-
tion changing its value from to : . Drifts
have been modeled as a linear evolution of parameter from

to at the end of the experiment. The level
of significance for Mann–Kendall was fixed at 99.9%;
and for the extended CUSUM and the CI-CUSUM
tests. The chosen allows the designer to consider a 99.9% con-
fidence interval on the mean value. The extended CUSUM test
and the CI-CUSUM test were configured using sam-
ples. The CI-CUSUM test was designed by considering configu-
ration #2; results of other configurations (#1, #3, and #4) for the
considered D1–D6 applications are presented (and discussed) at
the end of this section.

Results given in the following have been averaged over 150
runs, with uniformly extracted in each experiment from the

interval.
The following four indices are suggested to assess the perfor-

mance of the tests:
• false positive index (FP): it counts the times a test detects

a change in the sequence when it is not there;
• false negative index (FN): it counts the times a test does

not detect a change when it is there;
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TABLE I
SIMULATION RESULTS FOR THE CONSIDERED DATA SETS

• recognition capability speed index (RCS): it measures the
detection promptness by considering the time delay in de-
tecting the change;

• computational time index (CT): it provides the execution
time needed to perform the test (reference platform: Intel
Centrino 1.7 GHz, 1Gb RAM, Windows XP, all unneces-
sary processes aborted).

Results are given in Table I, where denotes a “not appli-
cable” situation, in the sense that the test cannot be run either
for lack of a priori information (CUSUM) or for the presence
of multidimensional signals (Mann–Kendall).

The extended CUSUM and the CI-CUSUM tests provide per-
formance in line with that given by the traditional CUSUM in
application D1 but without requiring any a priori information.
Mann–Kendall test provides comparable results but it is com-
putationally more expensive than tests based on CUSUM.

In application D2, the CI-test performs slightly better than
the Mann–Kendall as far as FP and FN are concerned. It is less
prompt in detecting changes but its computational complexity is
significantly lower. Conversely, the extended CUSUM is char-
acterized by a low complexity. It is very fast in detecting abrupt
changes but it is also less accurate. In drifts (which are generally
more difficult to identify than abrupt changes), the CI-CUSUM

TABLE II
CHANGE DETECTION ERROR (PERCENT) FOR DATA SET D5

TABLE III
CHANGE DETECTION PERFORMANCE FOR DATA SET D6

test is very effective with low FP and FN and a reasonable com-
putational load.
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TABLE IV
SIMULATION RESULTS FOR THE DIFFERENT CONFIGURATIONS OF CI-CUSUM

Application D3 shows that the CI-CUSUM test is particularly
effective in detectingdrift changes with contained FP and FN ra-
tios, yet it performs well in correspondence with abrupt changes.
It is expected that detection performance should improve by en-
larging the temporal horizon onto which tests are configured.
The comparison between the CI-CUSUM test and the others
cannot be done here because CI-CUSUM is the only test that
can be applied to multidimensional signals.

For data set D4, the CI-CUSUM test provides both the
highest detection accuracy and the quickest recognition ability.
The Mann–Kendall test achieves satisfactory results but its
computational complexity is very high. The extended CUSUM
guarantees the lowest computational complexity but is unsatis-
factory as far as the detection accuracy is concerned.

For data set D5, the results provided by CI-CUSUM are better
than the ones proposed in [43] in case of change detection based
on the respiratory data (while Mann–Kendall results are in line
with them). When considering EOG signals, no comparison can
be done because the results are not provided in [43]. A de-
tailed comparison is presented in Table II: when applicable, the
CI-CUSUM improves over literature results.

Results provided by CI-CUSUM in case of data set D6
(and summarized in Table III) are particularly interesting. The

CI-CUSUM test improves accuracy of results present in the liter-
ature [1] at the expenses of a delay in detecting the fault without
requiring supervised data for training (differently from methods
suggested in the literature which require supervised data).

On benchmarks D1–D6, we tested the four alternative hy-
pothesis configurations suggested for the CI-CUSUM test. As
presented in Table IV, configuration #2 (the one used in Table I)
guarantees the best balancing between FP and FN. Moreover, its
computational complexity is acceptable and in line with the one
provided by the best case (configuration #1).

As suggested in Section III, configuration #1 guarantees the
lowest false positive rate but suffers from the presence of high
false negative rate. Configuration #3 provides the best perfor-
mance in terms of RCS and FN but does not guarantee false
positive rates comparable with the ones of configurations #1
and #2. Moreover, the computational time of configuration #3
is higher than the computational time of configurations #1 and
#2. Configuration #4 provides low false negative rates but it has
the highest computational time.

As a final note, we suggest to consider configuration #2 and
CI-CUSUM as the most suitable change detection test for iden-
tifying a possible evolution of a process and design consequent
adaptive classification systems.
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V. CONCLUSION

This paper presents a novel approach to the change detec-
tion problem, aspect relevant in the neural network community
when designing classification systems able to track changing
environments. In contrast to the literature, where simple fea-
tures are considered for detecting changes, we suggest the use
of a set of features for detecting trends and drifts. A novel test
is suggested, the CI-CUSUM test, which somehow inherits the
detection ability of the extended CUSUM test procedure and a
computational intelligence philosophy, here also suggested to
generate a pdf-free extension of the traditional CUSUM. The
CI-CUSUM test performs well in detecting abrupt changes
in nonstationarity (e.g., due to faults), yet it is particularly
sensitive and effective in detecting small and smooth drifts,
situations where traditional change detection tests show their
weakness.
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