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Automated Selection of Test Frequencies for Fault
Diagnosis in Analog Electronic Circuits

Cesare Alippi, Senior Member, IEEE, Marcantonio Catelani, Ada Fort, Member, IEEE, and Marco Mugnaini

Abstract—This paper suggests three novel methods for selecting
the frequencies of sinusoidal test signals to be used in fault diag-
nosis of analog electronic circuits. The first and second methods
are based on a sensitivity analysis and show to be particularly
effective in linear circuits where a priori information and de-
signer experience can be exploited. Conversely, the third method
selects the input frequencies to be used for diagnostic purposes
without requiring any hypothesis about the circuit or testing
design background. As such, the method is particularly appealing
in complex—possibly nonlinear—circuits where the designer
experience is of little value and an effective “blind” approach saves
both designer and testing time. The suggested frequency selection
methods are then contrasted to each other against performance
and computational complexity.

Index Terms—Analog circuit diagnosis, test frequency selection.

I. INTRODUCTION

THE paper addresses the automated single fault location
issue in analog electronic circuits by considering the sim-

ulation before test approach (SBT) [1]–[10] and the harmonic
analysis [1]. Fault diagnosis is carried out by comparing the ac-
tual circuit under test (CUT) response (when the circuit is ex-
cited by a predefined set of sine waves) with a set of labeled
response examples contained in a fault dictionary (previously
built by simulating the circuit both under regular functioning
and faulty conditions). Fault detection and isolation is achieved
with a classifier, which makes a decision based on the signature
differences between the actual CUT responses and the stored
ones.

Here, we follow the harmonic analysis framework which re-
quires that the input stimuli exciting the CUT are sinusoidal sig-
nals at different frequencies; solutions based on the wide band
stimuli approach (e.g., white noise [10] or arbitrary waveforms
[7]) are more efficient in terms of analysis time but provide a re-
duced signal-to-noise ratio (SNR) and require a more complex
test setup.

It is well known that simulation after test (SAT) and SBT are
alternative approaches to the fault diagnosis in analog circuits
[11]. The SAT diagnosis involves a mathematical description of
the circuit during test [12] that enables to explicitly solve for
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Fig. 1. Sensitivity curves corresponding to two single fault conditions.

the values of internal parameters of the CUT from a sufficiently
large set of independent measurements. SAT methods require
costly circuit simulations to be carried out in real time and, as
such, are time-consuming procedures. This problem is solved by
SBT techniques which, conversely, require a very short time to
implement the test phase. Moreover, SBT techniques are more
versatile: they can be used in any domain (parameters, frequency
and time) and for any circuit (linear or nonlinear) provided an
efficient simulation engine (e.g., those used in analog circuit de-
sign). In a way, the main disadvantage of a SBT approach is re-
lated to the computational effort required to simulate off-line a
sufficiently large set of fault conditions; nevertheless, this com-
putational effort is required only once, before any test activity
is considered.

The SBT approach in the diagnosis of analog electronic cir-
cuit can be summarized in three steps:

• Selection of a suitable set of stimuli exciting the CUT; stimuli
must be chosen to maximally amplify the presence of faults
(within the harmonic analysis this step requires selection of
the sinusoidal stimuli frequencies).

• Selection of the parameters/features to be considered for con-
structing the fault dictionary (e.g., test node voltage magni-
tudes or phases, current magnitudes or phases).

• Design and configuration of the classifier by using the fault
dictionary.

The construction of the fault dictionary and configuration of
the classifier are hence two fundamental topics in the SBT diag-
nosis analysis and their optimization represents a critical issue.

0018-9456/$20.00 © 2005 IEEE



1034 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 54, NO. 3, JUNE 2005

Fig. 2. Faults are those characterized in Fig. 1. (a) Representative points for the two faults in plane f , f (b) Representative points for the two faults, in plane
f , f (c) Representative points and vectors superimposed to fault signatures (fault 1, circles; fault 2, stars).

While classifier performance optimization is a well known
problem, e.g., see [14]–[16], optimization of the dictionary
fault in terms of number and relevance of the signatures to be
inserted in is still a challenging issue [2]–[9] which strongly
depends on the test signals.

The fault dictionary must be as small as possible to reduce the
diagnosis procedure complexity and large enough to provide a
satisfactory coverage of the fault/fault-free space to grant fault
detection and localization accuracy.

The automatic selection of test waveforms is carried out in the
technical literature with different approaches [2]–[9] aiming at
an efficient fault diagnosis. In [6], fault observabilty is reached
by taking into account also fault masking while [5] addresses
test sine waveforms selection by minimizing the risk of false

rejection and false acceptance of a CUT. A different approach
has been suggested in [4] where test waveforms to be considered
have spectra maximizing a testability function in the frequency
domain. Anyway, in these papers test inputs are selected without
considering fault isolation optimization, i.e., the fault signature
discrimination ability.

Differently, we address the problem of selecting the test
signals by maximizing the system performance in terms of
fault isolation. This can be achieved by selecting a set of sine
waveforms able both to highlight faults and produce different
signatures for different faults, hence ensuring efficient fault
isolation. The three novel methods for frequency selection sup-
port an automated SBT diagnosis framework for the selection
of test stimuli and the development of the subsequent classifier
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TABLE I
COMPARISON AMONG COMPUTATIONAL COMPLEXITIES FOR THE DESCRIBED METHODS. N =TOTAL NUMBER OF EXAMPLES IN THE FAULT DICTIONARY, N

FAULT NUMBER, g COMPLEXITY OF THE TRANSFER FUNCTION OF THE CUT CALCULATION,D NUMBER OF POSSIBLE FREQUENCIES,N NUMBER OF SIMULATION

RUNS FOR THE EVALUATION OF THE SENSITIVITY (RANDOMIZED ALGORITHM APPROACH),M NUMBER OF BEST FREQUENCY SETS SELECTED AT EACH STEP OF

THE SELECTION ALGORITHMS, H NUMBER OF HIDDEN UNITS IN THE RBF CLASSIFIER

Fig. 3. CUT: Biquad filter-fault classes: Group 1 – R6, R7 faulty; group 2: R3, C1 faulty; Group3 – R4, C2 faulty; Group 4: R5 faulty; Group 5 – R2 faulty;
Group 6: R1 faulty; Group 7: no faulty components (fault-free condition).

here implemented with a radial basis function neural network
(of course, any other classification method can be considered
instead).

More in detail, the first two methods are based on a sensitivity
analysis. The former, which extends the work carried out in [16],
selects frequencies by relying on fuzzy-rules; the latter by max-
imizing a suitable figure of merit. The third method operates

in a blind way without requiring—or using—any information
about the circuit nature. As such, it is particularly appealing in
nonlinear analog circuits where the test designer background is
of little help. The method is general and can be applied to se-
lect any test stimuli feature other than frequency as required by
the harmonic analysis, e.g., amplitude and time duration or any
other feature characterizing the test signal.
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Fig. 4. (a) Sensitivity curves for the CUT of Fig. 3 (bandpass output); the test frequencies selected by the functional method are shown. (b) Training and test
errors of the RBFN classifier for the bandpass circuit.

The structure of the paper is as follows. Section II presents the
novel methods for input frequency selection. Application and
comparison of the methods suggested in Section II is carried
out is Section III by taking into account both diagnosis perfor-
mance (fault classification error) and algorithm complexity. Ex-
perimental results are finally given in Section IV.

II. SELECTING THE OPTIMAL TEST FREQUENCIES

The first two methods for frequency selection suggested in
this paper are based on the analysis of the circuit output sen-
sitivity, while the third one is somehow blind, since selection
of the optimal test signal frequencies is performed by analysing
a set of signal output examples. A similar approach was pre-
sented in [8] where the authors compute a transient test stimulus
with the objective of maximizing the isolation capability of the
test system by means of genetic algorithms. Here, differently,
by using sinusoidal test signals we significantly simplify both
test system and setup.

A. Selection Based on Sensitivity Analysis (Methods I and II)

Methods I and II are based on a sensitivity analysis and, more
specifically, on the evaluation of the sensitivity of the measured
output value with respect to perturbations induced by the faulty
components.

Hence, once defined the fault set ( possible fault classes
affecting the CUT), and the CUT parameters variations respon-
sible for each fault (hence, generating sets of CUT param-
eters), sensitivity functions need to be evaluated for each
considered output parameter. Each sensitivity curve shows, as
function of the frequency within the circuit bandwidth, the sen-
sitivity value of the envisaged output in correspondence with the
specific fault class.

Method I: Once obtained a fine sampling for the output pa-
rameter sensitivity, a set of fuzzy rules can be constructed to
select the optimal set of test frequencies according to the fol-
lowing rules.

TABLE II
PERCENTAGE OF ERRORS PROVIDED BY METHOD II. TEST SET: 60

EXAMPLES PER FAULT CLASS, UNIFORM RANDOM DISTRIBUTION IN

THE INTERVAL X � [0:01X ; 0:4X ]

Rule 1: IF (ONE OF THE SENSITIVITIES is LARGE) THEN (THE

DETECTABILIY is LARGE).
Rule 2: IF (ONE OF THE SENSITIVITY DIFFERENCES is

LARGE) THEN (THE DETECTABILITY is LARGE).
These rules simply translate the intuitive consideration that it

is possible to distinguish a fault iff each sensitivity pattern (at
the considered frequencies) shows a behavior different from the
others.

The fuzzy output response (detectability) represents a mea-
sure of the ability to identify and localize faults. The maximum
of the fuzzy output response corresponds to those frequencies
with the best efficiency in terms of fault diagnosis.

Fig. 1 shows an example for the sensitivity curves as-
sociated with two faults (fault 1 and fault 2) as a function of the
frequency . Rule 1 applied to the sensitivity curve “fault 2”
suggests that frequency must be selected for diagnosis.

Method II: The second method is based on the design of a
proper figure of merit to measure the diversity of the signatures
belonging to different faults. The frequencies maximizing
such a figure of merit are those to be selected and constitute
the optimal set of test frequencies.

The figure of merit derives from the nature of the testing
problem and requires introduction of the representative point
concept. We define the representative point for the th fault to
be a curve evaluated at one of the considered frequencies.
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Fig. 5. (a) Low-pass filter – C1 = 10 nF; C2n = 10 nF; R1 = 182; R2 = 11:1 k; R3 = 100 k; R4 = 1570; R5 = 1 k; R6 = 440; R7 = 10 k;
R8 = 10 k; R = 2640; Ra = 1 k; Rb = 5:41 k; C3 = 10 nF; C4 = 10 nF; R10 = 1312; R11 = 1 k; R12 = 111:1 k; R13 = 600 k; R14 = 10 k;
R15 = 10 k; R16 = 2320; R17 = 820; R18 = 1 k; Rd = 72:4 k; Rc = 10 k; fault classes: Group 1 – C1;, Group 2 –C2, R7, R8, R9; Group 3 – R1, R5,
Rb; Group 4 – R2, Ra; Group 5 – R3; Group 6 – R4; Group 7 – R6; Group 8 – C3; Group 9 – R14, C4, R15, R16; Group 10 – R10; Group 11 – R11; Group 12 –
R12=; Group 13 – R13; Group 14 – R17; Group 15 – R18, Rd; Group 16 – Rc.; Group 17-Fault free. (b) Low-pass filter fault sensitivities.

More intuitively, the representative point indicates the mean po-
sition of the signatures associated with the th fault.

We discovered that the distribution of the representative
points in the selected space allows the designer for evaluating
the complexity of the classification task by using the selected
test frequencies. Hence, by studying the distribution of the rep-
resentative points in all the considered -dimensional spaces it
is possible to find the best set of frequencies necessary for the
signature classification.

It is obvious that if these points are separate the average vari-
ations induced by the associated faults on the circuit response
with respect to the nominal one can be distinguished if observed
at these frequencies. Hence, by considering a figure of merit
that synthetically describes the geometric distribution of the rep-
resentative points for all the considered -dimensional spaces

it is possible to find the best set of frequencies for signature
classification.

To derive the appropriate figure of merit we refer to Fig. 1
where the sensitivity curves, obtained by the method presented
in [1] and [17] and associated with the two envisaged faults are
shown. Once selected frequencies and considered the CUT
with the faulty situation depicted in Fig. 1, the representative
points for the two faults (P1 for fault 1 and P2 for fault 2) are
those of Fig. 2(a) and (b). The figures show two bidimensional
spaces defined by different couples of frequencies. It can be seen
that, if vectors and (characterized by joining the extremes
P1 and P2 with the origin of the axis) have a large angular dis-
tance [e.g., refer to Fig. 2(b)] then the representative points are
significantly distinct as well. This implies that the two faults are
highly distinguishable. To further clarify this concept we also
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TABLE III
COMPARISON AMONG COMPUTATIONAL COMPLEXITIES FOR THE DESCRIBED METHODS AND FOR THE CUT OF FIG. 3. N (NUMBER OF EXAMPLES IN THE FAULT

DICTIONARY) = 420 (60 EXAMPLES PER FAULT CLASS)), N (NUMBER OF FAULTS) = 7, g (COMPLEXITY OF THE TRANSFER FUNCTION OF THE CUT
CALCULATION) = 47 Flops, D (NUMBER OF POSSIBLE FREQUENCIES) = 20,N (NUMBER OF SIMULATION RUNS FOR THE EVALUATION OF THE SENSITIVITY)
= 300,M (NUMBER OF BEST FREQUENCY SETS SELECTED AT EACH STEP OF THE SELECTION ALGORITHMS) = 5,H = 140 RBF HIDDEN UNIT NUMBER

refer to Fig. 2(c) that provides the signatures obtained for the
sample circuit under the two considered fault conditions (stars
and circles) superimposed to the representative points and vec-
tors. The signatures are evaluated as deviations from the nom-
inal value of the output voltage amplitude at the given
frequencies. They can be obtained by generating the deviations
of the faulty component values with an uniform distributions af-
fecting the circuital parameters outside the tolerance ranges up
to 40% of the nominal values, while fault free components are
characterized by values randomly distributed in the tolerance
ranges for the parameters.

We note that the angular distance between and affects
the discrimination ability of the two faults while the vector mag-
nitude accounts for the sensitivity magnitude, i.e., the distance
from the nominal condition.

The figure of merit for frequency selection is therefore based
on the sum of the distances of each representative point from the
lines joining the origin with the representative points of all other
faults [e.g., in Fig. 2(a) and (b) we have to refer to distances
and ].

The frequency selection algorithm can be summarized as
follows:

1. Consider a set of frequency ( )
and the sensitivities associated with the

fault classes

2. For all couples ( ,
) evaluate the distance, , of each

point ( ) from
the lines joining the origin (0,0) with
points ( );
evaluate as the sum of these dis-
tances, i.e., .

3. Select the couples (
) characterized by the larger value

of .
4. Add to each of the frequency couples
a frequency, hence obtaining fre-
quency triplets ( and

, ); repeat the pro-
cedure described in the above steps, i.e.,
evaluate the distance of each point

( )
from the lines joining the origin (0,0)
with the points
( ). Evaluate as the
sum of these distances. Select the
frequency triplets characterized by the
larger value of .
5. Proceed iteratively by adding to each
of the -uples another frequency com-
ponent and apply again steps 4 and 5.
6. Stop the iterations when the improve-
ment in the figure of merit is below a
given threshold. Select the -uple with
the largest value of ; such -uple be-
comes the set of test frequencies.

After having selected the test frequencies by means of method
I or II the fault dictionary can be constructed by simulating
fault examples for each of the possible fault classes. The
obtained signatures can then be used to configure the classifier
solving the faulty detection and placement problem [1].

B. Blind Selection (Method III)

A methodology based on a sensitivity analysis (frequency rel-
evance) has been developed to solve the frequency selection
problem. The method is blind in the sense that the frequency se-
lection problem is solved without requiring particular assump-
tions about the structure of the circuit, which can be either linear
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TABLE IV
EXPERIMENTAL RESULTS FOR THE CUT IN FIG. 3

or nonlinear. The unique information needed is the voltages
measured at the circuit test points. The basic idea supporting
the method is that a frequency is relevant to the whole diag-
nosis task if it improves the fault detection and location sub-
problems. The frequency selection problem is therefore strictly
related to the diagnosis performance: the optimal frequency set
is the one characterized by the minimum cardinality yet mini-
mizing the diagnosis classifier. As stated, the frequency selec-
tion problem is NP-hard in the sense that all possible classifiers
receiving all the possible groups of frequency should be envis-
aged. Moreover, once a candidate set of frequency is selected
we have to configure a classifier, operation requiring a time con-
suming training phase.

We suggest a methodology solving the frequency selection
problem with a Poly-time complexity in the number of frequen-
cies. The methodology, suggested in [18] to identify the set of
features relevant in a quality analysis problem, has been suitably
adapted to the test frequency selection problem.

The constructive method for frequency selection contains two
core problems:

1) identification of a subset of candidate test frequency
2) generation of a classifier to test the diagnosis performance

of the candidate subset.
The first problem is solved by means of an effective heuristic,

which groups test frequencies based on their effectiveness so as
to generate candidate solution. The second step which, de facto,
is a performance evaluation problem, takes the candidate solu-
tion and develops a diagnosis classifier. Afterwards, the perfor-
mance of the classifier must be evaluated. The time consuming
aspects associated with selection of the best classifier topology
(e.g., think of a neural classifier) and the subsequent training
phase have been solved by resorting to statistically-based ap-
proaches. In particular, we consider a -mean nearest neigh-
borhoods (KNN) classifier [15] and we assume that it effectively
estimates the optimal Bayes’s classifier (i.e., the analysis is op-
timistic); the hypothesis holds when the number of data is suf-
ficiently large [15].

TABLE V
PERCENTAGE ERRORS OBTAINED BY METHOD II. TEST SET: 60 EXAMPLES PER

FAULT CLASS, UNIFORM RANDOM DISTRIBUTION IN THE INTERVAL

X � [0:01X ; 0:4X ]

The immediate advantage of a KNN over other consistent
classifiers of neural type (e.g., feedforward and radial basis
function NNs) is that it does not require a proper training phase
(the classifier is immediately configured on the data set [14]).
Since the subsequent selection of the set of test frequencies
is based on diagnosis performance it is extremely important
to obtain an accurate estimate of the performance for the
diagnosis classifier. Due to the limited number of data a proper
cross-validation technique cannot be adopted in the sense
that the performance estimate may not be enough accurate. A
leave one out (LOO) validation technique has been considered
which estimates the performance of the ensemble of classifiers
receiving the candidate test frequency set (a 95% of confidence
has been considered, see [6]).

As a consequence of the considered framework, the perfor-
mance estimate of the final classifier is accurate with high proba-
bility: the relative accuracy among different classifiers (i.e., sets)
is finally used to suggest a new candidate set of test frequencies.
The classifier maximizing the LOO performance is the best one
for the particular diagnosis problem. The interesting related ef-
fect is that the frequencies it receives are the most relevant ones
to solve the envisioned application and the obtained classifier
is the one to be used also to solve the diagnosis problem. The
final algorithm implementing the test frequency selection can be
summarized as follows:
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1. Denote by the set containing all
possible test frequencies.
2. Build subsets of each con-
taining a test frequency.
3. For each estimate the LOO perfor-
mance of all KNN classifiers receiving

as input.
4. Select those yielding a performance
above a threshold;
if only one is selected goto 5
else build their union and goto 3

5. Try to integrate in all frequencies
one by one. A frequency is inserted in
solely if it improves the classifier per-
formance.
6. Set comprises the optimal set of
test frequency and the associated classi-
fier is the optimal diagnosis classifier.

III. COMPLEXITY OF THE TEST FREQUENCY

SELECTION METHODS

The complexity of the suggested methods has been evalu-
ated by taking into account the contributions associated with the
time-consuming phases needed to solve the diagnosis problem.
Methods I and II are characterized by the three subphases: sen-
sitivity analysis, test set selection and diagnosis classifier con-
struction. Conversely, from its nature, method III is character-
ized by a single phase, which receives all data and outputs the
optimal classifier with the optimal test frequencies.

The complexities of the methods with respect to the different
phases are given in Table I. More in detail, as far as method I
and II are concerned, we consider the three different contribu-
tions aforementioned. The first one, that accounts for the evalu-
ation of the sensitivity curves, was calculated by referring to the
method presented in [17] and based on Montecarlo simulations
( is the number of runs used in the Montecarlo simulation).
The second contribution is given by the complexity of the sensi-
tivity curve analysis algorithm as performed by the fuzzy system
or by the evaluation of the figure of merit (this term is, in gen-
eral, very low when compared with the first contribution). For
these two methods we report in the table also the contribution as-
sociated with the Neural Network training (the training method
is described in detail in [1]). It must be underlined that the com-
plexity of the first two methods can be lowered if other sen-
sitivity evaluation techniques are used (in particular, symbolic
methods). Here we report the Monte Carlo-based algorithm for
its general validity, as it can be applied to any domain (and also
in nonlinear applications [17]).

It can be seen that the blind method’s complexity depends
on the product of the square of the number of possible frequen-
cies ( ) and the square of the number of examples ( ) in the
fault dictionary, while the complexities of the other two methods
grow linearly with . As a consequence, by considering a large
set of possible test frequencies the complexity of the III method
can be very high. Conversely, the first two methods are consid-
erably influenced by the complexity of the sensitivity evaluation

that may become dramatically high if the computational burden
of a CUT simulation grows. Finally, it can be seen that for RBF
training the larger contribution is given by the least mean square
solution of a linear system that depends on the cubic power of
the number of hidden units of the neural classifier; conversely,
the complexity of the blind method depends on the square the
examples in the examples in the fault dictionary . This com-
parison points out that for medium and low complexity linear
circuits methods I and II present a significant advantage in terms
of processing time while the main advantage of method III re-
sides in its blind approach.

IV. CASE STUDIES

The methodology described in the previous sections has been
tested for effectiveness on two linear circuits and a nonlinear cir-
cuit. The two linear circuits were chosen among those consid-
ered as benchmarks in the related literature (e.g., see [10]); this
allows a direct comparison of the obtained results. The third cir-
cuit is related to a real-world application studied by the authors.

A. Test Frequency Selection and Diagnosis in Linear Circuits

The first circuit, shown in Fig. 3, is a Biquad filter with a
cutoff frequency of 15.9 kHz. Single faults were considered
(faults are due to a single parameter variation) and each com-
ponent tolerance has been fixed to 1%. For this particular appli-
cation a fault condition is defined as a variation of the magnitude
of the transfer function above the 3% of its nominal value. The
circuit signature is obtained by measuring the voltage amplitude
at the output node Vb. This selection allows a very simple test
setup.

By taking into account also the fault ambiguity classes, we
obtained six fault classes.

It must be noted that the ambiguity classes can be found with
an automated procedure when we use approaches based on the
sensitivity curves analysis. In this paper, the tools implementing
approaches I or II comprise a sub-program that regroups the
faults characterized by the same sensitivity curve shape in a
single fault class.

The comparison among the three techniques was performed
under the same conditions to grant comparability: the test fre-
quencies were selected among 20 feasible logarithmic spaced
frequency values belonging to the [100 Hz, 90 kHz] interval.
The analyzed frequency range was selected in order to obtain a
sufficiently high SNR when performing measurements. As such,
the range is derived from fixing the maximum acceptable filter
attenuation.

We considered 60 fault samples for each fault class by ran-
domly sampling the interval for each ,
where is the nominal value of the generic component, non
faulty components randomly varied in their tolerance ranges.

Fig. 4(a) shows the sensitivity curves of the CUT. All three
methods found out three optimal test frequencies which are
very similar; by using the identified test frequencies method
I (fuzzy + RBFN) and III (blind method) give a classifica-
tion error around 3%, while for method II (figure of merit +
RBFN) the error is around 2.5%, as it can be seen in Fig. 4(b).
The detailed classification results for method II are listed in
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TABLE VI
COMPARISON AMONG COMPUTATIONAL COMPLEXITIES FOR THE DESCRIBED METHODS FOR THE CUT OF FIG. 5. N [NUMBER OF EXAMPLES IN THE FAULT

DICTIONARY) = 1020 (60 EXAMPLES PER FAULT CLASS)], N (NUMBER OF FAULTS) = 17, g (COMPLEXITY OF THE TRANSFER FUNCTION OF THE CUT
CALCULATION) = 1000 Flops,D (NUMBER OF POSSIBLE FREQUENCIES) = 20,N (NUMBER OF SIMULATION RUNS FOR THE EVALUATION OF THE SENSITIVITY)

= 300,M (NUMBER OF BEST FREQUENCY SETS SELECTED AT EACH STEP OF THE SELECTION ALGORITHMS) = 5,H = 300 RBF HIDDEN UNIT NUMBER

Fig. 6. CUT.

Table II, where the average errors obtained with RBFN’s with
complexity between 14 and 30 nodes per class are presented.

Very few fault-free circuits (0 for the data set considered) have
been classified as faulty ones. We experienced similar results
with methods I and III.

The effective computational complexities of the three tech-
niques (in Mflops) based on a Matlab execution are shown in
Table II.

The performance in terms of classification errors are very
similar for the three approaches but the computational com-
plexity of the blind method is significantly higher in this case
since it is characterized by a reduced number of fault classes
and a limited CUT complexity. In fact, it can be seen that the
sensitivity evaluation step, which is the heaviest contribution in
computational complexity for the first two methods is contained.

For these circuits simulation results were confirmed by
an experimental test campaign. We considered TL081s for

OPAMP’s and an automatic measurement system composed of
a 61/2 Digital multimeters (HP 34 401A) and a signal generator
(HP 33120A). We performed ten tests for each class by forcing
the resistances to assume values outside their tolerance ranges
by means of trimmers. We obtained a 100% correct location of
the faults for all testing methods (see Table IV). This excellent
result can be explained by noting that for experimental tests the
minimum deviation from the nominal value was higher than
5%. It must also be noted that if faults are due to variations
above 40% of the nominal value (used to train the classifier) the
percentage of correct diagnosis/missed location significantly
grows.

The described techniques have been applied also to the cir-
cuit depicted in Fig. 5 which represents a fourth order low pass
filter with a cut off frequency of 15.85 kHz. Fault conditions
were defined as we did in the previous CUT and provided 16
fault classes (also including the fault free one). As in the pre-
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Fig. 7. (a) Sensitivity of voltage amplitude (node V out1). (b) Sensitivity of voltage amplitude (node V out2) – Fault classes: Group 1- R13,R14,R25; Group
2 – R22,R27; Group 3 – P1,R24; Group 4 – C8; Group 5 – R29,C11,C12; Group 6 – R12,C5,C6.

vious example we considered a grid of 20 logarithmic spaced
feasible frequencies sampling the [100 Hz, 60 kHz] interval.
For each class 60 fault examples have been considered by ran-
domly extracting the samples from the
interval a uniform distribution. The measured quantity is the
output voltage amplitude.

The fuzzy approach (I) provided eight test frequencies and
an error of about 8.5%. Instead, method (II) selected seven fre-
quencies with an error of 8%; method (III) found out nine fre-
quencies [as shown in Fig. 5(b)] with a classification error of
about 8%. In particular, Fig. 5(b) shows the low pass filter sen-
sitivity curves set and the frequencies selected for the diagnosis
by method II.

As we did for the previous CUT classification results pro-
vided by method II are detailed in Table V). In this CUT the
classification error is higher than the previous one due mainly
to the larger fault class number. In particular, the group 5 fault
is characterized by a low sensitivity and, hence, is more trouble-
some. We discovered similar results with methods I and III.

The estimates for the computational complexities are given
in Table VI. It can be seen that with a CUT characterized by
a significant complexity the complexities of the three methods
get closer, even if the blind method still requires a higher com-
putational effort. It is expected that by increasing the circuital
complexity of the CUT the third method is to be preferred also
with respect to the computational complexity issue.

B. Test Frequency Selection and Diagnosis in Nonlinear
Circuits

The proposed techniques can be extended also to nonlinear
circuits. In this case, the harmonic approach can still be used

Fig. 8. Sensitivity of switching delay for one comparator, as a function of the
stimulus (sine wave) frequency,’—’: group 1, ’- -’: group 2, ’.-’group 3.

(obviously also the wave amplitude has to be selected in addi-
tion to the frequency) and the output parameter should be se-
lected carefully. In Fig. 6 the CUT is the analog part of an alarm
for railways applications, that ensures safety, i.e., isolation from
high voltages. Failure detection plays, for this circuit, a funda-
mental role to grant a good safety level. The cut was designed to
detect deviations of the input ( ) voltage from the reference
voltage (12 V). The CUT was divided into two separate sub-
systems: the linear and the nonlinear sections. The linear sub-
section consists of two branches containing amplifiers and low
pass filters with time constants of about 10 s that cut off transient
disturbances. The test stimulus is applied to circuit input ,
while four measurement points have been selected ( ,
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Fig. 9. RBFN classification error (%) for the linear section as a function of
hidden node number.

, , ). In this case, the harmonic approach
was followed, that allows the designer for analysing the linear
part as done in the previous two examples (input, , output

and ) where the amplitudes of voltages at the
output nodes were considered as the measured entities. Since
the nonlinear part consists of comparators, the parameters used
for diagnosis are the delays of the switching modules with re-
spect to input zero crossing (evaluated at the two nodes ,

).
We assumed a single parametric fault affecting the CUT.

CUT output signatures were obtained by PSPICE simulations,
by considering tolerances of 1% for resistors and of 5% for
capacitors, while the values of faulty components are uniformly
and randomly distributed in the range
for resistors and for capacitors. Sensi-
tivity was obtained as in the previous examples by considering
300 Montecarlo runs.

Fig. 7 shows the sensitivity curves obtained for the magni-
tudes of voltages and . It can be seen that if we
measure only a voltage only three faults can be isolated (fault
P1 is characterized by a sensitivity similar but not identical to
faults in group1 and 2), while by using the two voltages ampli-
tude six fault classes can be detected.

For the nonlinear section we considered the same input stim-
ulus; this enables a simultaneous test for the two circuit sec-
tions. The sensitivity curves obtained for this section have been
regrouped in three ambiguity groups and are given in Fig. 8.

Also in this case a set of 20 feasible frequencies was ob-
tained by a logarithmic sampling of the frequency range [0.1 Hz,
1 kHz]. Frequencies below 0.1 Hz have been a priori discarded
to avoid long testing times and stability problems.

The linear and the nonlinear sections were analyzed sepa-
rately. For the linear section the three methods provides a couple
of frequencies with similar values (approximately 0.1 and 1 Hz),
and a classification error lower than 3% (results obtained with
method II are presented in Fig. 9). The nonlinear section anal-
ysis led, with all approaches, to the expected result that only
one frequency is needed and that the best frequency for the test
is the lowest feasible frequency (in this case 0.1 Hz), while the

optimum amplitude of the sine wave was 5 V. In this case the
error is around 1% for methods I and II and 2% for the blind
method.

V. CONCLUSION

In this paper, we have proposed three techniques for the iden-
tification of the optimal frequencies to be used for constructing
the test signals in a simulation before test approach. Results
show similar performances with the noticeable advantage of
method III over the others due to its completely blind approach,
which allows to identify the test frequencies without requiring
a priori information about the nature and behavior of the CUT.
Conversely, on the computational front, we found that methods
I and II present a significant advantage over method III in terms
of processing time on medium and low complexity circuits (the
advantage reduces when the complexity of the CUT increases).
The methods are completely automated and, as such, allow the
researcher to develop a fully automated procedure for designing
the CUT’s diagnosis phase.
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