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Abstract—Maximization of the catalyst efficiency in automotive
fuel-injection engines requires the design of accurate control sys-
tems to keep the air-to-fuel ratio at the optimal stoichiometric value
AF . Unfortunately, this task is complex since the air-to-fuel ratio
is very sensitive to small perturbations of the engine parameters.
Some mechanisms ruling the engine and the combustion process
are in fact unknown and/or show hard nonlinearities. These diffi-
culties limit the effectiveness of traditional control approaches. In
this paper, we suggest a neural based solution to the air-to-fuel ratio
control in fuel injection systems. An indirect control approach has
been considered which requires a preliminary modeling of the en-
gine dynamics. The model for the engine and the final controller
are based on recurrent neural networks with external feedbacks.
Requirements for feasible control actions and the static precision
of control have been integrated in the controller design to guide
learning toward an effective control solution.

Index Terms—Air-fuel ratio control, automotive fuel injection,
air pollution, neural network control, recurrent neural networks.

I. INTRODUCTION

I N THE last years, we observed an increasing attention to-
ward problems related to the environment with a particular

focus on pollutants generated by vehicles in industrialised coun-
tries. Since 1970, the European community has set strict require-
ments on the maximum exhaust emissions tolerated for a ve-
hicle hence forcing the automotive industries toward thezero
emission vehicle(ZEV) target. Fig. 1 shows the European con-
straints on pollutants measured in g/experiment (a benchmark
of the European community) by considering the base indexes
(year 1970) as reference points. Similarly, the state of Califor-
nian government has required that by 2004 10% of vehicles
must be ZEV, while the others must reduce exhaust emissions
of 60–84% with respect to actual values [1]. These strong con-
straints pushed the research toward the development of suitable
electronics, embedded systems, and mechanical and chemical
devices to reduce noxious emissions.

Unleaded fuel, catalytic converters, and an accurate control
of the variables involved in the fuel combustion process are rel-
evant ingredients to reach such a goal.
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Fig. 1. Limits on exhaust emissions imposed by the European community in
years 1970–1992.

In this paper, we consider a fuel-injection system composed
of a spark ignition engine with a catalytic converter and a
linear oxygen sensor on the exhaust manifold to measure the
air-to-fuel ratio (AF) after the combustion process. The case
study is anAlfa Romeo 1.3lengine.

Pollutants are generated during the combustion process,
which can be modeled as [2]

C H O N CO CO

NO O N H O CH (1)

where CH is the fuel, O N is the air mixture, CH
accounts for all the residual unburned HCs, and
are some reaction coefficients affected by AF in a nonlinear way.
More in detail

• when AF is in the neighborhood, the combustion
process generates all the reaction products present in (1);

• in the case of a lean mixture , the model sim-
plifies and it is assumed that we can neglect the
coefficients;

• in the case of a rich mixture , the model is
such that .

In the last years, much effort has been directed toward the
development of devices capable of properly working with lean
AF mixtures (that means low emissions and fuel savings), but
much work is still needed; [3] represents an interesting example
in this direction.

A different approach attempts to reduce pollutants by pro-
cessing the exhaust gases. Catalytic converters follow this direc-
tion by accelerating the chemical process of oxidation for HCs
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Fig. 2. Efficiency of a catalytic converter as a function of AF.

and CO to HO and CO and reduction of NO to N . To this
end, it has been proved that maximal efficiency of the catalyst
can be obtained by keeping AF within a very strict band around
its stoichiometric value [4], [5]. Fig. 2 shows the
efficiency of the catalytic converter in reducing pollutants as a
function of AF; 1.0 in the ordinate means a 100% efficiency in
reduction. We note that even small variations around this value
may cause severe loss in efficiency [5], [6]; in Fig. 2, a 1% dis-
crepancy in AF with respect to the stoichiometric value may
cause up to a 50% reduction of the catalytic converter efficiency
in reducing pollutants.

Controlling AF so that it equalizes is a difficult task.
This is due to the nonlinear behavior and the cyclic nature of
the engine within a wide operating range, the presence of un-
certainties and unpredictable disturbances in the process, and
the great difficulties in inferring relevant variables from impre-
cise or difficulty measurable ones.

Classic feedback controllers for AF [6]–[8] provide a control
action, which depends on two additive contributions. The first
contribution comes from a closed loop control of AF, which
relies on information coming from the exhaust gases oxygen
(EGO) sensor. This control allows for maintaining AF around its
stoichiometric value but it is not effective in providing a prompt
control reaction during transients. The second contribution ad-
dresses this issue by considering an open loop controller based
on transient information coming from the engine (e.g., the en-
gine angular speed, the opening of the throttle valve, etc.). The
second contribution is fundamental for an accurate control of
AF and is based on the transient fuel film compensation (TFC)
model described in [7], [8]. In this case, the control algorithm
cancels the fuel film dynamics and injects the right fuel quan-
tity into the engine intake manifold at the correct time. The ef-
fectiveness of TFC strictly depends on the characterization of
the fuel transfer mechanism: the simple model generally used to
represent the phenomenon [7]–[9], and here adopted, supposes
that a fraction of the fuel delivered to the intake system deposits
on the manifold surfaces. Such a fuel then evaporates with a rate
dependent on the mass of fuel in the puddle and a delay time. In
spite of its linear formulation [8], the fuel film dynamics model
is highly nonlinear: the fuel fraction and the delay strongly de-
pend nonlinearly on several engine variables (e.g., load, speed,

and temperature). Only a good knowledge of these parameters
can assure achievement of significant range compensation and
hence effective transients control.

An adaptive compensation of the fuel dynamics by means of a
fuzzy-based algorithm is suggested in [10]; there the author con-
siders a switching EGO sensor for its low cost. In this study we
prefer to consider a linear sensor for its accuracy in providing a
measure of the amount of unburned oxygen in the exhaust gases.
The actual trend in the automotive industry is in this direction
and many vehicles already implement this medium cost sensor.

Due to the presence of uncertainties and nonlinearities in the
process nonlinear black-box solutions as neural networks be-
come attractive techniques to be investigated for an optimal con-
trol of AF. The expanding use of neural networks in identifica-
tion and control areas influenced the automotive field with rele-
vant contributions, e.g., in the area of anti-lock braking systems
[11], engine idle-speed control [12], transient AF control [4],
[13], [14].

In this paper, we study the applicability and the effectiveness
of neural networks to control the AF/ratio. We believe that for
its simple nature an optimized neural network is an interesting
solution for the AF control, which could be inserted in the fu-
ture within the electronic control module (ECM) of a vehicle.
In addition, evolution of electronics, very-large-scale integra-
tion (VLSI) integration and reconfigurable devices such as field
programmable gate arrays (FPGAs) will make feasible online
training for the parameters of the neural network so as to deal
with aging effects, inefficiencies in modeling dynamics and sup-
port an accurate tune of the controller’s parameters to the spe-
cific engine. This last aspect is particularly appealing for sport
cars characterized by high performance and low productions.

An online identification of the dynamics of AF in injected
engines and, therefore, a time varying model of the engine to be
used for a subsequent adaptive control design is given in [15].

In the following we consider neural networks as core ele-
ments for function approximation and offline dynamic modeling
to test the validity of the approach; future developments will in-
vestigate online training and adaptive solutions.

Function approximation is considered to improve the quality
of the equation-based model of the system which, once assessed,
can be used to design the controller; in addition to the control
issue the obtained neural networks and can be used to improve
the accuracy of the engine model. In developing the controller,
we adopted the classic indirect control configuration of Fig. 3
(e.g., see [16], [17]), which requires a preliminary identification
procedure, here carried out with recurrent neural networks. The
reason for such a choice is that the final neural modelof the
process is

• continuous and differentiable (hence, allowing for the use
of gradient-based algorithms to subsequently train the
neural controller );

• robust with respect to feasible perturbations in its input
variables. At the beginning of learning the control input
does not assume significant values and, in a direct control
configuration, it could provide unfeasible inputs for the
model (which might become, as happens in our applica-
tion, numerically unstable). Conversely, the neural model
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Fig. 3. Indirect control configuration.

provides a graceful degradation in performance subject
to the same perturbations;

• characterized by a reduced computational load, which
simplifies the training of the controller.

Fortunately, it is not required an accurate model for the whole
process, but only a good model covering the operating condi-
tions of it. The model of is then used to design the controller
and tune its parameters for tracking the reference signal gener-
ated by . We will require the controller to provide a null error
at the end of the transient phase and a feasible control action for

.
The suggested approach is, in a way, related to [18]. Differ-

ently from them we provide a static neural model to characterize
some parameters ruling the wall wetting process: this allows for
maintaining the simple and effective linear model of [7] (which
also grants an immediate evaluation of the model stability). As
far as the neural control is considered, we opted for feedforward
neural networks with external feedbacks instead of the hybrid
feedforward/feedback solution given in [18] (where the hidden
layer resembles the topology of a Hopfield network). Training
the first model is simpler than the second, hence making more
feasible the possibility of a future online implementation of the
controller in the ECM. Our network design also simplifies the
straight hardware implementation of the neural network both
with respect to data path and control (only the delayed outputs
are in fact presented to the network’s input). In addition, we
considered a hybrid neural controller in which requirements for
feasible control actions and the static precision of control have
been integrated in the control design to guide the training toward
an effective control solution.

The structure of the paper is as follows. The equation based
model of the engine is briefly introduced in Section II. Sec-
tion III deals with the development of a neural model for the
deposition coefficient and the evaporation time constant. Such
models are used to improve the model accuracy of the engine
necessary for the controller design. Section IV addresses the
problems related to configuration of a dynamic recurrent neural
model of the process as required by the indirect control ap-
proach. Such a neural model is finally used in Section V to de-
sign the controller .

II. M ODELING THE DYNAMICS OF THE AF RATIO

In this work, we considered a sequential multipoint injection
system characterized by an injector for any single cylinder; re-

sults can be easily extended to deal with single point or full-
group multipoint injection systems.

The first step in designing a controller is to provide an ac-
curate mathematical description of the whole system, here the
process leading to AF. This task can be accomplished by writing
all physical equations describing the processes involved and
identify the unknown parameters from experimental data (e.g.,
see [15]). When the mechanisms ruling a process are totally un-
known or its equation-based model becomes computationally
prohibitive a black-box approach becomes the only viable solu-
tion.

A simple functional description for AF is given in Fig. 4.
represents the engine angular speed (measured by the engine
speed pickup sensor), (alpha) represents the opening of the
throttle valve (driven by the accelerator pedal),and are
the external temperature and pressure, respectively,is the
engine temperature, and (or ) is the fuel injection time.
The most interesting blocks, which directly affect AF measured
by the exhaust gases oxygen sensor , are the fuel film de-
position block, whose model is described and improved in Sec-
tion III, the exhaust pipe, and the oxygen sensor blocks. Each
block is described by choosing the most suitable physical driven
model either available in the literature or developed at FIAT. For
such models we neglected all those dynamics, variables or sec-
ondary order effects not relevant to the design of the controller.

III. N EURAL RECONSTRUCTION OF THEPARAMETERS

AFFECTING THELIQUID FUEL FILM DEPOSITION

As we mentioned in the introduction, the most critical tasks
that the ECM has to manage are the engine transient condi-
tions, i.e., those situations where the fuel supply rate has to
be rapidly adjusted to face the air flow response on demand
changes. During such situations the injected fuel does not pro-
duce the quantity required in the cylinder because of fuel depo-
sition and transportation mechanisms [9]. These behaviors are
of primary importance in affecting AF and must be carefully
modeled to develop an effective model for the engine. More in
detail, once a certain amount of fuel has been injected, only
a fraction ( being the deposition coefficient) reaches the
combustion chamber (in a simple but effective linear model with
a constant of time ). The fraction condenses on the mani-
fold walls (from which the name wall wetting). Only afterwards
the condensed fuel evaporates (in a linear model with con-
stant of time ) and contributes to increase the effective fuel
amount. Let be the effective fuel evaporated and the
injected one both reaching the combustion chamber. The whole
process is described by the following system of equations [7]:

(2)

The model can be simplified by observing that the constant of
time is about one tenth of [8]: the dynamic of the process
can be described with a single constant of time . Unfor-
tunately, and are unknown, nonlinear, and strongly depen-
dent on the revolution number of the engineand the pressure
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Fig. 4. Fundamental blocks constituting the process.

at the intake manifold . and are not directly measur-
able and must be derived from experiments. More in detail, a
test engine has been constructed and driven to different
and are those parameters which best explained the measured
data according to the process depicted in Fig. 4 and the linear
model (2) for the wall wetting phenomena.

In general, such parameters are filtered with linear tech-
niques, interpolated to obtain the relationships
and , and placed in lookup tables. The avail-
ability of a limited number of noisy data belonging to nonlinear
functions limits the effectiveness of linear techniques and
suggests considering model-free function approximations, e.g.,
by using neural networks.

The knowledge of and over the whole feasible working
points of the engine is extremely important since it allows cre-
ating an accurate model for AF. In our problem such a model
will be directly used for developing a neural network modeling
the engine and indirectly to develop the neural controller.

A. Selecting an Appropriate Neural Model

To develop a model for and ,
we considered feedforward neural networks of regression type
[19]: in particular, we focused the attention on three-layered
neural networks with input neurons, hidden units, and
a single output neuron. The hidden units are characterized by
hyperbolic tangent activation functions and the output of the
neuron is linear in its activation value.

Several techniques have been suggested in the literature to
design an optimal neural model by solving the compromise per-
formance vs. network complexity (e.g., spectral decomposition
[20], optimal brain damage [21], optimal brain durgeon [22],
shared weights [23], early stopping [24]). In such methods the
best model is the one minimizing the generalization error on the
cross-validation set. Cross-validation presents a serious disad-
vantage when a limited data set is available: saving examples
to cross-validate a model reduces the data available for con-
figuring the weights of the network, hence impairing the effi-
ciency of learning. In such a case, all data should be used for

training, thereby, making it necessary to use criteria, which esti-
mate the generalization ability of the neural model directly from
the training data. The generalized prediction error [28], the net-
work information criterion [26] and the final prediction error bi-
ased (FPEB) criterion [27] are criteria following this principle.

Our goal is to determine the function which best ap-
proximates the unknown function given the measured
input/output pairs and the classic mean squared error (MSE)
loss function. In the following, the unknown functions to
be inferred are and , while the input vector is

.
Intuitively, the FPEB criterion suggests that the optimal

neural model for the given application must provide good
performance on the training set and be topologically simple.
The criterion is defined as

FPEB MSE MSE (3)

where is the vector of weights and biases of the neural net-
work, is the trace operator, is the Moore–Penrose pseu-
doinverse, with is the error
gradient, , and MSE
is an estimate of the MSE Hessian (see [27] for details). The
criterion can be seen as the sum of two contributions: the first
term addresses the performance of the considered model over
the training set, the second one is related to the number of avail-
able data and the model complexity. It is obvious that an overdi-
mensioned model provides good performance on the training set
by overfitting the available data, but it will be penalised by the
second term of FPEB.

We considered the FPEB criterion and not the more simple
techniques based on early stopping since the latter are quite sen-
sitive to the stopping criterion used [28]. Note that, in real appli-
cations, FBEB is not very computationally intensive and can be
immediately computed on software platforms such as Matlab®

or Mathematica®.
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TABLE I
FEASIBLE RANGE FOR THEINPUTS AND THEOUTPUT WITH THEIR UNITS

B. Determination of the Optimal Neural Models forand

The determination of an optimal neural model requires
training of different neural networks (which differ in the
number of hidden units) and computing the FPEB for each of
them. The network for which the FPEB is minimal solves the
function approximation task.

Each training set was limited to 256 values ( in and
) and obtained after an experimental campaign carried out

at FIAT on the Alfa Romeo 1.3l engine.
Learning was performed by considering the quasi-Newton

Levenberg–Marquardt training algorithm [29] applied to a set of
neural models with hidden units varying from 2 to 27. We mon-
itored the evolution of FPEB over training time and we stopped
it when the FPEB became either constant or increasing and the
number of effective number of parameters used by the model
[27] was constant.

This methodology selected a network with 13 hidden units
to approximate and a network with 10 hidden
units for . The determined neural networks have
been inserted in a library and integrated into the model of the
engine as black boxes to be subsequently used to design the
neural identifier and the controller of Fig. 3.

IV. NEURAL IDENTIFICATION OF THE AF RATIO

Identification of a dynamic system with neural networks re-
quires few steps to be accomplished: extraction and decimation
of data for training, test and validation; selection of a suitable
family of recurrent neural models; choice and implementation
of a recursive training algorithm. Each issue plays a relevant role
in configuring an effective neural model and requires a careful
analysis of thea priori knowledge about the process to be iden-
tified. To this end, we followed the identification methodology
suggested in [30].

Determination of a proper neural family is one of the main de-
sign topics: a wrong choice generates a large model bias, which
—most of times— leads to bad results. Despite the large litera-
ture on configuring recurrent networks (see [31] for a review) a
trial and error approach is somehow necessary to select the most
appropriate neural network. To identify AF ratio, as required
by the indirect control approach, we chose the neural output
error models for their successful performances on preliminary
experiments (we also experimented memory neurons networks
[31] with scarce results). In particular, we considered a recurrent
single-layered network with an arbitrary number of hidden units
characterized by hyperbolic tangent activation functions and a
single linear output. The suitably delayed output and external
inputs constitute the network inputs [16].

Data extraction is one of the most critical phases. Data need
to be extracted (possibly in an automatic way) so as to cover
all relevant working points of the process. If the data set is not
sufficiently informative (as it happens when inputs are not able

to fully excite the process dynamics), the best model, in the best
scenario, is able to approximate the behavior of the process only
in the interval defined by the training pairs.

Data extraction requires a preliminary analysis to determine
the relevant inputs affecting AF. By relying on the equation-
based model presented in Section II, we discovered that the mea-
sured AF , obtained by processing data coming from the
exhaust gas oxygen sensor can be expressed as

AF AF (4)

All inputs are either directly measurable, or known. A time de-
pendency analysis was then carried out to determine the appro-
priate time delays for the inputs and the output to be presented
to the neural network. To this purpose, the most critical element
is the exhaust manifold, which pipes the post-combustion gases
toward the oxygen sensor. These gases reach the sensor with
an unknown delay function of with , modeled as a pure
delay in classic models. This restrictive assumption was relaxed
in our application.

By indicating with the sampling time and with the in-
teger number closest to , expression (4) becomes

AF AF

(5)

where means that there is a dependence in
the time interval. Equation (5) completely
describes, at a functional level, the relevant inputs and their time
dependencies on .

The determination of the unknown and gives informa-
tion about the structure of the inputs for the neural network, re-
duces the number of networks to be trained, and simplifies the
identification procedure. To estimate such parameters, we iden-
tified the feasible working operational domain for the input and
the output signals, as presented in Table I. Inputs must resemble
feasible signals: steps (a pressure or a depression of the acceler-
ator pedal) and ramps (constant acceleration) for, and ,
and ramps for . The use of pseudorandom binary signals to ex-
cite the inputs is prevented by the fact that the modelbecomes
numerically unstable. Steepness, time duration and amplitudes
for steps and ramps must be chosen randomly so as to model all
the actions the driver and the ECM might envisage. We extracted
such parameters from a uniform distribution. Both transient and
steady-state conditions have been generated to provide signals
covering the whole frequency spectrum.

Data have been then decimated to reduce the training set
size (and implicitly the training time), avoid irrelevant data re-
dundancy, and filter high frequency noise. The sampling time

, has been identified by means of a fast fourier transform
(FFT) applied to inputs and output as follows. We determined
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TABLE II
PERFORMANCES OFDIFFERENTNEURAL TOPOLOGIES

the signal among inputs and output with the largest band and its
Nyquist frequency; we then multiplied such a value by a confi-
dence parameter hence discovering that it was possible to deci-
mate data at Hz without any information loss.

By investigating the feasible signals we observed that,
spans the 0.025–0.166-s interval. This implies, according to the
sampling rate, that we need from one up to five time delays for
the external inputs. Such a number has an immediate impact
on the number of inputs feeding the neural networks and on
training time. We should consider up to five delays for each
input variable, which leads to a network with 24 external inputs.
We discovered that it was possible to consider two delays for
the inputs and three delays for the output dynamic with a small
loss in accuracy. The final neural network receives 15 inputs:

at time , and at time
.

Training was implemented with the quasi-Newton
Davidon–Flecter–Powell algorithm [29]. We obtained poor
results by using simpler training algorithms based on a straight
gradient descent as back-prop through time and a quick-prop
modified to account for the recurrent configuration. The consid-
ered algorithm was modified according to the William–Zipser
correction to account for the recurrent configuration and the
teacher-forcing modality [32] to optimize the restart of the
batch algorithm. The first correction accounts for the fact
that training data are related in time and allows for writing
an iterative formulation for the gradient computation which
speeds up training. The teacher-forcing modality forces the
real initial conditions to the network inputs instead of using
the ones estimated by the network so as to reduce the initial
misalignment between the real and the neural-provided output
trajectory. In our application, we could not obtain acceptable
performance without these two mechanisms. Other equivalent
algorithms have been presented in [33].

Experimental evidence proved that it was necessary to con-
sider a training set of at least 30 000 pairs for a total of 16.5 h
of driving in order to achieve a good accuracy. The test set was
introduced to implement some sort of controlled early stopping.

Different experiments were carried out by varying the number
of hidden layers (1 and 2) and the number of neurons per layer.
Results are given in Table II: MSE is the MSE during test, while
the mean error and the mean % error are defined as the averaged

(a)

(b)

Fig. 5. Validation on a real data set. (a)N = 4000 r/min. (b)N = 3000

r/min.

value of AF AF and AF AF AF in
validation, respectively. Here, AF is the air to fuel ratio provided
by the neural model.

Validation was carried out with real data coming from the
Alfa Romeo engine. Fig. 5 shows the AF validation over time;
the neural output and the real one are plotted with a continuous
line and a dashed line, respectively. In particular, Fig. 5(a) refers
to a r/min case, Fig. 5(b) to r/min.
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Fig. 6. Training configuration for the neural controller.

The neural model provides a good accuracy around the stoi-
chiometric value, while performance slightly decreases in cor-
respondence with high peaks (e.g., points A): there is no need
to improve the model since we are interested in developing a
controller working in the stoichiometric neighborhood and high
peaks are unfeasible situations. Moreover, it has been proved [6]
that fast oscillations ( Hz) in AF with small amplitude
do not significantly degrade the conversion efficiency due to the
converters averaging properties.

V. NEURAL CONTROL OF THEAF RATIO

The final step is to determine the controller. The variable
to be controlled is the injection time, provided by the ECM
on the bases of the information coming from the sensors and
the control algorithm, which contains a neural network similar
to the one used to identify AF. Training is somewhat different
now and relies on the information coming from AF estimated
by the neural model AF designed in Section 4. A block
description of the training configuration is given in Fig. 6, where

is the stoichiometric value for AF.
Such a control scheme is quite flexible and allows the

network for subsequent online training. This aspect has been
tackled in [17], where the normal operation is interleaved with
training both the controller and model. As we mentioned, on
line training is particularly appealing since it allows dealing
with the process aging evolution and outcomes the fact that
recurrent neural networks are able to approximate a dynamic
system only for a finite amount of time [31]. Online training
implies that the learning algorithm is inserted in the ECM and
must be therefore extremely simple from the computational
point of view. To this end, we tested the feasibility of this
possibility by considering a very simple online training based
on a straightforward gradient descent algorithm in which
parameters are updated after the presentation of a single pair,
as suggested in [16].

Today, given the limited onboard computational resources
and the amount of tasks an ECM has to perform (including
on-board diagnosis), the low memory requirement and real
time constraint, online training seems unfeasible. This problem
should be anyway solved within few years thanks to the

Fig. 7. Operating configuration for the neural controller.

advance of electronics and the trend of architectural design
toward processors containing independent functional units, as
happens with very-long-instruction-word (VLIW) processors.
It is reasonable to imagine a scenario in which the actual
processes running within the ECM leave a functional unit free
to issue those instructions necessary for online training.

Online training must not necessarily be continuous but must
be enabled to refine the controller only when required. This, in
addition to face ageing effects, also improves the features of
the controller by tuning the controller to the specific engine.
Whether or not continuous training is envisaged, once the con-
troller has been configured within the ECM, it commutes to
the normal operation modality. All the information comes di-
rectly from the sensors, as shown in the configuration of Fig. 7:
the controller receives AF now measured by the exhaust
gases oxygen sensor and provides the control variable.

In developing a controller for AF we have to satisfy two re-
quirements: 1) a null error at the end of the transient phase; and,
2) a feasible control signal (here, the injection time) char-
acterized by a limited control action. The first requirement can
be tackled by considering one simple integrator, which acts on
AF AF during training and onAF AF during
the normal operations. The integrator must be inserted before
the neural controller and guarantees a null error at the end of
the transient phase. This requirement could have been directly
integrated in the training procedure; however, we experimented
that this approach is only partly effective. In fact, because of
its recurrent structure, the neural network may be significantly
biased so to introduce an error at the steady state. Even if this
error may be tolerated in other applications, the control of AF
imposes a strict requirement on high accuracy.

The feasibility of the control action was obtained by inserting
directly in the training error function a term penalising severe
control signals.

Experiments proved that the above two modifications were
not sufficient to grant an acceptable control action. In fact, we
experimented that, to force a prompt control, the neural con-
troller was using a control action with high frequency compo-
nents. Even if appealing, such a controller design is not accept-
able in an effective control of the fuel injector. We had therefore
to limit the bandwidth of the control action by requiringto be
more regular. This requirement was obtained by inserting in the
training error function a further penalty term acting on the first
derivative of . The constraints force the training algorithm to
restrict the search in the neural parameter space toward a con-
troller able to provide a regular control signal over time. The
final training function is the following:

(6)
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Fig. 8. Final operational scheme for the neural controller.

Fig. 9. � for experiment numbers 1 and 2.

where , and are some coefficients weighting the relevance
of the three constraints.

Again, we have to configure the neural controller in terms of
inputs and output. As for the module, we determined the func-
tional and the time dependencies of. In full agreement with
more classic controllers (e.g., see [6]–[8]), this phase suggests
that the controller receives , and (which can be mod-
eled here as a disturbance) and provides the injection time
to be given to the engine. The structure of the controller during
training is shown in Fig. 8, where represents the one step
delay. During the normal operations, it must receive the mea-
sured AF instead of AF .

The neural controller was trained at the beginning with the
robust algorithm used to identify the processand, then, was
commuted over a simple gradient descent algorithm applied
to the error function . The inputs have been defined over
a rough input profile of the type used for the identification
process. Again, we considered a test set to decide when to
interrupt the training phase.

We noted that the presence of a control action created prob-
lems in the initial phases of learning, whereprovides wrong
values. In this case, the integrated error and the training proce-
dure diverge. The problem can be solved either by bounding the
integrator with a saturation mechanism or by initially training
the controller without the integral action and inserting it later
on. Both solutions were equally effective in our application. We
determined from experiments that the best neural network was
characterized by ten hidden units.

(a)

(b)

Fig. 10. Controlled AF. (a)N = 1000r=min. (b)N = 4000r=min.

The neural structure of the controller was validated over dif-
ferent validation sets composed of real data; the two experi-
ments we present refer to data measured at FIAT. The input
profile for is given in Fig. 9. The profile has been obtained
by pushing and releasing the accelerator pedal: we start from
a constant pressure of a 20angle and, then, we accelerate by
reaching a 47angle, and so on. is equal to 1000 r/min in the



ALIPPI et al.: A NEURAL-NETWORK BASED CONTROL SOLUTION TO AIR-FUEL RATIO CONTROL 267

TABLE III
COMPARISON IN PERFORMANCESBETWEEN THEHYBRID CONTROLLER AND THE TFC ONE

Fig. 11. Control actions(t ) corresponding to the second experiment.

first experiment and 4000 r/min in second one. In Fig. 10(a) and
(b), we present the main results achieved in our experiments:
the control action provided by the neural controller is shown
in a continuous line while performance provided by the TFC
controller is given by a dashed line. The TFC controller is the
one provided in [7], [8], based on the inversion of the Aquino’s
model. We consider the TFC as the baseline control. For sake of
correctness, we should have inserted our controller in the ECM
and compared its real performance with the baseline TFC tai-
lored to the engine. Since our study was to test the feasibility of
the neural approach and not to substitute the controller present
in the ECM, we were not allowed to realize such an experi-
ment. Despite this, it is still possible to test the validity of the
approach by assuming that the simplified model describes the
real engine; this is correct since both TFC and the neural con-
troller have been configured on such a model. Once validated,
the neural controller could be inserted in the ECM and tuned
to the specific engine by slightly modifying its weights with a
simple gradient descent algorithm. In the following, the inputs
for the experiments have been extracted from the real engine,
while the output must be intended as above.

In the plots, we can appreciate the null error at the steady state
(as forced by the modified training loss function) and the signif-
icant reduction in AF. Peaks in Fig. 10(a) and (b) correspond to
the transient of . We note that the suggested controller provides
an effective and prompt control action, which drives AF toward

.
To compare the capabilities of the neural controller with those

provided by the TFC, we evaluated some indexes for each exper-
iment; comparisons are summarized in Table III. We computed
the percentage of values greater than 3% for the two controllers
and the mean of the percentage of time that the values are out-
side the critical phase. In the worst case, the neural controller is
outside the confidence region for at most about 1% in average

and for about 9% in only few points. As the control action is
concerned, the improvement in performance was obtained with
an action comparable with that requested by the TFC: this is
a consequence of the penalty terms introduced in the training
error function. To compare the control actions, we refer to the
second experiment. Fig. 11 shows the evolution over time of
as provided by the neural controller (continuous line) and the
TFC (dashed line).

VI. CONCLUSION

The paper presents an application of neural techniques to
the automotive field. Design of a neural controller of the AF
ratio has been proposed which aims at minimizing the exhaust
emissions in fuel injection engines. To improve the equation-
based description of the process, we considered feedforward
neural networks to model some relevant nonlinear parameters
describing the fuel film dynamics. Since the reduced number
of data prevented the use of cross validation techniques, we se-
lected the best neural model with the FPEB criterion. The neural
controller was then obtained by referring to an indirect con-
trol scheme, which required a preliminary identification of the
process. The final neural controller has been designed to opti-
mize performance, limits the necessary control actions, and al-
lows for an on-line training. Encouraging results have been ob-
tained on data coming from a real engine.
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