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SBT Soft Fault Diagnosis in Analog Electronic
Circuits: A Sensitivity-Based Approach by

Randomized Algorithms
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Abstract—This paper addresses the fault diagnosis issue based
on a simulation before test philosophy in analog electronic circuits.
Diagnosis, obtained by comparing signatures measured at the
test nodes with those contained in a fault dictionary, allows for
sub-systems testing and fault isolation within the circuit. A novel
method for constructing the fault dictionary under the single
faulty component/unit hypothesis is proposed. The method, based
on a harmonic analysis, allows for selecting the most suitable test
input stimuli and nodes by means of a global sensitivity approach
efficiently carried out by randomized algorithms. Applicability
of the method to a wide class of circuits and its integration in
diagnosis tools are granted since randomized algorithms assure
that the selection problem can be effectively carried out with a
poly-time algorithm independently from the fault space, structure,
and complexity of the circuit.

Index Terms—Analog circuits, fault diagnosis, neural classifiers,
radial basis function networks, randomized algorithms (RAs), sen-
sitivity analysis.

I. INTRODUCTION

T ESTING and diagnosis of electronic devices are funda-
mental topics in the development and maintenance of safe

and reliable complex systems. In both cases, the attention is
focused on the detection of faults affecting a subsystem whose
appearance generally impairs the global system safety and
performance [1].

In a complete fault diagnosis procedure, fault detection and
isolation must be carried out together; the effectiveness of the
procedure depends on fault detection and isolation performance
as well as the complexity of the test phase. While there are es-
tablished techniques to obtain an automatic diagnosis for a dig-
ital circuit, the development of an effective automated diagnosis
tool for analog or mixed circuits is still an open research field.

Two major issues make the analysis particularly difficult:
the complex nature of the fault mechanism, namely the phys-
ical/chemical process leading to a failure, and the unknown
values for the actual component parameters (which differ
from the nominal values). Parameter deviations depend on the
intrinsic nature of the production process of the component
and on-the-field deviations such as those related to aging or
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thermal effects. Such situations, which do not change the circuit
topology, are commonly defined as “soft” or parametric faults
and may lead to unpredictable incorrect operations depending
on their impact on the circuit performance.

Two different approaches are used to obtain a circuit diag-
nosis in the analog system [2]. The first approach is named
simulation after test (SAT) [3]–[5]: fault isolation is obtained
by estimating the circuit parameters from the measured circuit
outputs. The identification of the circuit parameters is based
on the assumption that enough information is available in the
measurements and that measurements are mutually indepen-
dent. The method suffers from several drawbacks associated
with the identification procedure if the system is nonlinear
or local minima issues arise. In addition, SAT techniques are
generally time consuming when applied to large circuits. The
alternative approach, that has given satisfactory results in cir-
cuit diagnosis, is named simulation before test (SBT) [6]–[10]
and ensures a reduced test time also when complex circuits
are envisaged.

The SBT approach is based on the comparison of the circuit
responses associated with predefined test stimuli with those in-
duced by different fault conditions. A subsequent classification
must be considered to solve the fault detection and isolation
problems.

Signatures associated with faults are generated during a simu-
lation of the circuit before the diagnosis phase and are collected
in a “fault dictionary.” The design of a diagnosis SBT-based ap-
proach for a circuit under test (CUT) is an articulated process
that requires the following:

1) identification of the most controllable and observable
nodes in the CUT (test nodes);

2) input stimuli selection, i.e., identification of the most ap-
propriate test stimuli able to excite the CUT so that the
faulty-induced effect propagates to an observable node;

3) definition of a circuit signature, i.e., extraction of a set of
features from the signals measured at the test nodes. The
selected features must be able to highlight faults;

4) definition and construction of a fault dictionary. The ele-
ments to be stored are circuit signatures, each of which is
labeled by the indication of the faulty unit. The dictionary
contains information associated with fault-free and faulty
situations;

5) design of the classifier and classification of the actual
circuit signature by exploiting the knowledge present
in the fault dictionary. The classifier provides the
faulty/fault-free indication and, when a fault is identified,
its location.
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Due to the continuous nature of the soft fault mechanism and
the presence of different sources of noise, a complete “fault dic-
tionary” containing all feasible fault examples cannot obviously
be generated. The problem can be partly solved by sampling the
fault space and considering an “intelligent” diagnosis system
able to generalize from the finite set of fault examples or using
efficient pattern recognition techniques [11]. Neural classifiers
trained by the fault dictionary have been shown to be promising
solutions [6], [7], [12]–[14]. Here, we consider the neural net-
work approach presented by the authors in [14], where input
stimuli are sinusoidal waves characterized by different frequen-
cies exciting the CUT at different instants of time. Other solu-
tions based on the wide band stimuli approach, such as those
based on white noise [6], are more efficient in terms of analysis
time but provide a reduced signal-to-noise ratio.

The circuit signatures constituting the fault dictionary are ob-
tained during simulation by injecting feasible faults in the CUT
and measuring the amplitude of the CUT transfer function at
different test points. The construction of the fault dictionary is
a fundamental topic in the SBT [16], [17] and its optimization
represents a critical issue in terms of number and efficacy of the
signatures to be inserted.

In this paper, we present a novelglobal sensitivity analysis
for the CUT which allows improving available diagnosis tools
in the

• selection of the most suitable test points;
• identification of the most effective input stimuli

(frequencies).

The suggested method is based on randomized algorithms
(RAs) [18]–[21] that allow for removing all hypotheses as-
sumed by the sensitivity related literature such as the small
perturbation hypothesis and are characterized by a poly-time
complexity independent from the dimension of the perturbation
space.

The use of a global sensitivity analysis, independent from any
limiting hypotheses about the nature of the CUT and the per-
formance loss function, can be effectively inserted in any SBT
methodology and is applicable to a large class of analog circuits.

The structure of the paper is as follows. Section II introduces
RAs and the neural classification scheme suggested in [14] as
the reference diagnosis system for performance comparison.
Section III provides the general diagnosis approach based on
RAs and suggests the new method for selecting the most rele-
vant test input stimuli and nodes. Experimental results applied
to two CUTs are given in Section IV to show the effectiveness
of the proposed method.

II. RANDOMIZED ALGORITHMS AND THE REFERENCE

DIAGNOSIS SYSTEM

This section provides the background on RAs needed in sub-
sequent sections as well as the basic description of the neural-
based classification scheme considered for fault detection and
location.

To grant applicability of the proposed method to a large
class of circuits, we have to relax all the hypotheses assumed
in the sensitivity/robustness literature; this can be obtained by
resorting to RAs [18]–[21].

RAs are sample-based techniques that inherit and integrate
the Monte Carlo method and the theory of learning philosophy.
Extensive evidence for the effectiveness of such statistical ap-
proaches can be found in the control theory community where
a great effort has been devoted to the analysis and design of ro-
bust controllers [21]–[23].

A. RAs: the Basic Concepts

Denote by a generic function and by the function af-
fected in some perturbation injection points by the perturbation
vector . belongs to a continuous-dimensional perturba-
tion space drawn according to the probability density function

(a priori there is a different for each component of the
perturbation vector). At this level, nothing is said about nature
and placement of perturbations.

The effect of perturbations affectingand the discrepancy
between and can be measured according to a discrep-
ancy loss function which is assumed to be measurable ac-
cording to Lebesgue with respect to the perturbation space.
Practically, all circuits and significant loss functions are mea-
surable according to Lebesgue.

To compute the sensitivity of a generic functionsubject
to perturbations, spanning their dominion according to
a given loss function , we have to compute the minimum
value for which the inequality holds.

A dual probabilistic problem can be considered, which tests
whether the deterministic problem holds
for a given level of probability or not. In particular, when

, we have that the deterministic
and the probabilistic problems coincide at least on the pertur-
bation dominion , where the Lebesgue measure ofis
null. Denote by the probability that the
loss function is below a given, but arbitrary, positive value,

.
In other terms, represents the volume of the perturbation

points satisfying the inequality and hence it provides a measure
of the impact of perturbations on . We observe that the
probability is unknown but can be estimated by random sam-
pling of the perturbation space. Therefore, extractindepen-
dent and identically distributed from according to
and generate the indicator function defined as

if
if .

(1)

An estimate of can be obtained as

(2)

Of course, the adherence of to depends on some required
accuracy level (i.e., we require that ), which, in
turn, depends on the number of samplesdrawn from . is
a random variable depending on the particular extraction of the

samples. In fact, we would have obtained a different estimate
for each different set of cardinality drawn from . To

remove this statistical fluctuation, we introduce a confidence
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TABLE I
METHOD COMPARISON

level and we require that the inequality
holds at least with probability .

By selecting as suggested by Chernoff [24]

(3)

we grant that

(4)

holds with arbitrary confidence and accuracy.
Construction of will be the key point for the subsequent

diagnosis approach.

B. Neural-Based Diagnosis System

For completeness, we briefly present the classifier needed to
generate a complete diagnosis system. The chosen classifier has
been suggested by the authors in [14] and is composed of a ra-
dial basis function neural network [15]. The three-layered neural
network has Gaussian radial basis units in the hidden layer and
linear outputs. The input layer receives the CUT actual fault sig-
nature and classifies it as faulty or fault-free by indicating, in the

faulty case, the faulty unit. A winner-takes-all philosophy has
been considered in the output layer.

The network is trained by data contained in the fault dictio-
nary in three separate steps [21].

• The centers of the hidden node activation functions are
placed on the centroids of fault dictionary data clusters.
The clustering algorithm used in this work is the Fuzzy
C-means.

• The width of the activation function is set by a p-nearest
neighbor heuristic.

• The weights of the output linear nodes are found in a su-
pervised way by least square method.

The trained network can be used to diagnose circuits belonging
to the envisaged CUT family.

III. RAS-BASED METHODOLOGY TO DESIGN

THE FAULT DICTIONARY

Identification of the most effective testing nodes and input
stimuli selection are critical points to design an effective fault
dictionary and to carry out the circuit diagnosis in a reasonable
time.

The designer goals are minimization of the number of test
points (each of which requires a measurement), features to be
extracted (which impact on the computational load required by
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Fig. 1. CUT: a Biquad filter. The nominal values are in the appropriate units.

the feature extraction algorithm), and input stimuli (there is a
cost for each input presentation).

A sensitivity analysis can be envisaged to measure the ability
of an input stimulus to excite a fault and propagate its effect at
a testing point; this ability depends on the input stimulus, the
placement and nature of the fault, the structure of the circuit,
and the chosen test node. By studying the sensitivity of a test
node subject to sinusoidal inputs (at different frequencies) with
respect to soft faults, we can identify the most active frequen-
cies and effective test nodes. A sensitivity-based approach can,
therefore, be suggested to select the test points and stimuli fre-
quencies.

In general, standard sensitivity analysis methods operate in
the small by assuming unreasonable hypotheses about the struc-
ture of the circuit and the nature of the fault. The most common
assumptions are differentiability for the CUT (which allows for
subsequent linearization) and the small faults (deviation) hy-
pothesis. An additional problem to the sensitivity/robustness
analysis is posed by the continuity nature of the fault/deviation
space, which makes a point-to-point exploration unfeasible. To
grant applicability of the proposed methodology to a large class
of circuits, we have to relax all the hypotheses assumed in the
sensitivity/robustness literature by resorting to RAs.

The main result is that an estimate of the sensitivity degree
for a large family of functions once affected by perturbations
can be obtained with a poly-time complexity and arbitrary ac-
curacy and confidence regardless of the dimension of the pertur-
bation space (e.g., the number of perturbation injection points).
In other words, we can estimate with a limited computational ef-
fort the impact of soft faults/deviations on the circuit test points
regardless of the circuit complexity.

A methodology for selecting the optimal test frequencies and
the optimal test points can be developed by using RAs to com-
pute the sensitivity of (CUT response) in the candidate test
points once the CUT is affected by perturbations in the circuit
parameters defined in domain.

In particular, describes the function implemented by the
ideal CUT, namely the analog circuit in which all components
of the circuit (e.g., resistors and capacitors) are characterized
by their nominal values. Conversely, a perturbed function
models a real CUT in which the parameters differ from the nom-
inal values due to the production process, parameter deviation,
soft faults, etc.

Given a controllable node , the first steps of the procedure
can be detailed as the following:

• For each candidate test node , denote by the
variation in amplitude of the transfer function between
nodes and at a given frequency.

• Generate i.i.d. samples according to the chosenand .
Each deviation must be extracted according to the
that reflects the parameter variation of the CUT associated
with the component production. For instance, if the pro-
duction process generates parameters ruled by a Gaussian
distribution centered in their nominal values with toler-
ance , the of is Gaussian with standard deviation

.
• Evaluate the estimate for each can-

didate frequency . The curve describes the sensitivity
of the output of the CUT subject to the parameter fluctua-
tions in at the given frequency.

The curve fully characterizes the behavior of the circuit re-
sulting from the production process. Note that we have not con-
sidered a single circuit but an ensemble of circuits; the ensemble
contains all those acceptable circuits we could have generated
by acquiring the parameters and assembling them according to
tolerance .

We tested that, in several CUTs, a good estimate for the
curve can be obtained by significantly reducing the con-

fidence and accuracy degrees and hence the number of samples
to be extracted. This happens when the function ap-

plied to the specific CUT is reasonably “smooth” in the domain
.
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A soft fault is a fault that changes and biases the ensemble
behavior of the ideal circuit. Therefore, to evaluate the sensi-
tivity degree of the ensemble, we have to study the effect of
faults. Faults can be defined as those deviations of parameters
pushing the circuit out of the feasible ensemble and, as such,
are characterized by an abnormal behavior. In other terms, we
could imagine that faults are generated by an inaccurate pro-
duction process characterized by larger tolerances (perturbation
domain ).

To study the sensitivity of the circuit ensemble on larger
we have to do the following:

• Assume a fault condition when all circuit parameters re-
lated to a faulty component deviate abnormally. We could
consider, for instance, a Gaussian distribution centered in
the nominal value of the parameters and a larger standard
deviation .

• Evaluate for each frequency the estimate
with respect to the newly perturbed

space.
• The sensitivity of the CUT associated with different per-

turbation domains can be obtained by evaluating the dis-
tance between curves and . We
verified that an effective measure of the sensitivity of the
node at frequency is ; the expectation is
taken with respect to.

The proposed sensitivity analysis is particularly flexible and can
be applied to any perturbation domain and CUT, regardless of
the perturbation magnitude associated with the faulty param-
eter. The complexity of the CUT does not affect the number
of simulations required to estimate but it affects the time re-
quired to compute . In particular, when a linear behavior
is considered and the CUT can be accurately described by a
known transfer function, the computational burden is substan-
tially independent from the CUT complexity. Table I presents a
comparison between the different sensitivity analysis methods
presented in literature and those based on RAs with respect to
algorithm and numerical complexities.

The information obtained by the sensitivity analysis can be
exploited to identify the test input stimuli and nodes. It is ob-
vious that a test node is relevant when the average sensitivity
value is large. Moreover, a frequency is exciting when it induces
a large sensitivity value. It must be observed that a fault can be
localized only if the set of output deviations is a signature for
the considered fault at the selected test frequencies.

In this paper, we select a test stimuli (and node) and we
construct the set of test stimuli (and nodes) by considering those
yielding the maximum average difference in the sensitivity
curves.

For completeness, the final steps of the methodology require
the development of the fault dictionary and the design of the
classifier. In particular, it is required to do the following:

• generate the fault dictionary by inducing reasonable faults
for each possibly faulty unit;

• extract a signature for each fault;
• design the classifier from the fault dictionary.

The whole diagnosis procedure is applied in the next section to
two nontrivial CUTs.

IV. EXPERIMENTAL RESULTS

To present how the methodology can be used to identify the
most effective test points and frequencies, we consider two
examples where faults at component and sub-system level are
considered.

A. Component Fault Diagnosis (Biquad Filter)

The CUT of the considered universal filter (Biquad) is shown
in Fig. 1; the filter has been designed to have a cut-off frequency
of 15.9 kHz. We assume that all components composing the cir-
cuit come from a production process of tolerance and
that faults act directly at the component level (each component
at a time can be affected by a fault).

We identify three interesting observable nodes in the circuit
and, in particular, the voltage of the high pass-filter, the
voltage of the band-pass filter, and the output of the
low-pass filter. The input stimuli are injected into the control-
lable node by applying a voltage directly at . By considering
the ambiguity groups (faults affecting them constitute an
equivalent class), seven fault classes result for the CUT:

— class 1: R6, R7 faulty;
— class 2: R3, C1 faulty;
— class 3: R4, C2 faulty;
— class 4: R5 faulty;
— class 5: R2 faulty;
— class 6: R1 faulty;
— class 7: no faulty components(fault-free condition).

As suggested by the method presented in Section III, we have
to generate the sensitivities of the CUT for each of the three test
points.

The and curves should be obtained by considering
high accuracy and confidence levels, e.g., and

which would require samples to be extracted
to study the circuit ensemble. As in Section II, in several appli-
cations, a smaller number of points provide the same estimates.
In this case, we discovered that works well (from the
theory point of view it corresponds to and ).
We experimentally observed that excellent results can be ob-
tained also with and, hence, with a reduced computa-
tional complexity.

The for the three testing nodes as a function of
the frequencies is given in Fig. 2. We have seen that all faults are
detectable. It is important to note that the test frequencies and
node selection must be performed by considering a high sensi-
tivity and also selectivity, i.e., at the test frequencies, the sensi-
tivity must have a characteristic shape for each fault. From these
observations, we selected. We considered, at the end, seven
test frequencies extracted in the neighborhood of the cut-off
frequencies.

The next step requires designing the classifier. Fault condi-
tions can be simulated by allowing the component parameters
of the faulty sub-system to deviate from their nominal value
and span the interval; a uniform distribution has
been considered for its conservative property [25]. The classi-
fier was trained with the 300 examples per class constituting the
fault dictionary. It can be seen in Fig. 3 that for a reasonably
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. E(jP̂ � P̂ j) function for the different fault classes (“-” for nodeV , “- -” for V , “+” for nodeV ). (a) Class 1: R6, R7 faulty; (b) class 2: R3, C1
faulty; (c) class 3: R4, C2 faulty; (d) Class 4: R5 faulty; (e) class 5: R2 faulty; (f) class 6: R1 faulty.
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Fig. 3. Classification error as a function of the hidden node number for the Fig. 2 CUT.

complex topology (larger than 170 hidden nodes), the testing
error is below 4%.

B. Sub-System Fault Diagnosis

As a second example, we consider the circuit shown in
Fig. 4(a). The CUT consists of four filtering stages and an
adder; the transfer function of the CUT is given in Fig. 4(b).

Differently from the previous case we consider faults at the
sub-system level instead of at the component level. This is the
most common case in complex circuits where the basic element
is a sub-system (which, if faulty, can be replaced). The six fault
classes listed below are taken into account and, in particular:

— Class 1: Highpass 1 faulty;
— Class 2: Highpass 2 faulty;
— Class 3: Lowpass 1 faulty;
— Class 4: Lowpass 2 faulty;
— Class 5: Adder faulty;
— Class 6: No faulty units (fault-free condition).

Characterization of the faulty element is related to a loss in per-
formance of some critical feature of the sub-system. In this case,
we define a sub-system to be faulty when

• for each filter stage, the cut-off frequency differs from the
nominal value by more than 20%;

• for the adder, the CUT maximum deviation of the CUT
response amplitude is larger than 20% with respect to its
nominal value.

Fault conditions can be simulated as in the previous example by
extracting the component parameters from the
uniform interval. Only simulations associated with a single
faulty unit were inserted in the fault dictionary.

For the considered CUT, the stimulus input is inserted at
the input node of the HP1 stage while the test output is that of

(a)

(b)

Fig. 4. (a) CUT schematic; (b) CUT transfer function.

LP2. One test point is enough since the filter is composed of
cascading noninteracting stages. Moreover, for the structure
of the filter, each fault affects the CUT behavior in distinct
frequency regions. For this property, the estimate can be
obtained by sampling all circuit components in their parameter
domain simultaneously.

To this end, it is interesting to note that the tolerances of the
different components must not necessarily be the same. In the
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TABLE II
COMPONENTVALUES FOR THEFIG. 4(A) CUT

(a)

(b)

Fig. 5. (a) ^P continuous line,^P dashed line; (b) distance between the two curves:E(jP̂ � P̂ j).
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Fig. 6. Classification error as a function of the hidden node number for the CUT in Fig. 5(a).

specific case, the nominal values for parameters and their toler-
ances are given in Table II.

The sensitivity analysis provided by the method described
above led to the results reported in Fig. 5. In particular, Fig. 5(a)
shows some examples for and as a function of at three
different frequencies.

Fig. 5(b) presents the average distance between the curves as
a function of the frequency; as discussed before, the frequency
plot represents the sensitivity of the output to circuit compo-
nent variations. Note that there are four frequency regions whose
peaks are in the neighborhood of the filter cut-off frequencies.
As expected, the sensitivity is a maximum in such points and we
have to select the test signal frequencies in these four regions.

We extracted 10 test frequencies from these areas and we fur-
ther reduced the dimension of the input space to six by means of
principal components analysis techniques. The RBF classifiers
have been developed based on the fault dictionary that contained
a training set of 350 faults per class for each of six features (the
ones coming from the PCA).

Classification results are given in Fig. 6, where it is shown that
the classification error is a function of the number of the hidden
nodes of the classifier. The test error is below 6% with a reason-
able complexity for the neural network (85 hidden nodes).

V. CONCLUSION

In this paper, a novel method for selecting the test input
stimuli and nodes for analog circuits is presented. The method
is based on a sensitivity analysis carried out with a polynomial
time by RAs. The statistical behavior of the circuit output (or
of a CUT performance parameter) is evaluated by means of

a reasonable number of Monte Carlo simulations (Pspice),
independently from the dimension of the component parameter
space. Results, obtained by applying the diagnosis technique
presented in [14] to an optimized “fault dictionary,” have
been presented. The classification error improvement in fault
detection and isolation with respect to the optimized procedure
suggested in [14] is around 2%, which represents a relevant
increment due to the cost of the devices to be tested. In addition
to the performance improvement, the methodology can be
easily and effectively implemented in an automatic tool for
circuit diagnosis.
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