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Abstract—Accuracy, robustness, and minimality are fun- p,p Effective number of parameters
damental issue_s in system-leve_l de_sig_n_. Such pro_perties are of the network and its estimate,
generally associated with constraints limiting the feasible model res ;

i ) pectively.
space. The paper focuses on the optimal selection of feedforward 50 Perturbati tor affecti
neural networks under the accuracy, robustness, and minimality er. u'? a .'On vec Or_a (?C ing.
constraints. Model selection, with respect to accuracy, can be 0 Variation in generalization error
carried out within the theoretical framework delineated by the induced bysO.
final prediction error (FPE), generalization error estimate (GEN),
general predicion error (GPE) and network information criterion
(NIC) or cross-validation-based techniques. Robustness is an |. INTRODUCTION

appealing feature since a robust application provides a graceful . .
degradation in performance once affected by perturbations in O NE of the fundamental problems involved in neural-net-

its structural parameters (e.g., associated with faults or finite / work modglin_g is architecture optimization which aims
precision representations). Minimality is related to model selection at high generalization performance. The fact that performance

and attempts to reduce the computational load of the solution maximization is a primary concern does not necessarily imply
(with also silicon area and power consumption reduction in a that it is the unique goal to be pursued. In solving an applica-

digital implementation). A novel sensitivity analysis derived by the .. . . - .
FPE selection criterion is suggested in the paper to quantify the tion, other requirements can in fact be taken into account, which

relationship between performance loss and robustness; based onderive from specifications, constraints, or methodological is-
the definition of weak and acute perturbations, we introduce two sues. In general, a compromise between performance (accuracy)

criteria for estimating the robustness degree of a neural network. and constraints satisfaction must be solved to obtain the “best”

Finally, by ranking the features of the obtained models we identify neural network for the specific application

h i I k. . S

the best constrained neural networ Examples of constraints are minimality (the smallest neural
Index Terms—Acute perturbations, constrained model selection, network solving the task) [1], smoothness (regularity and

feedforward neural networks, robustness, sensitivity, system-level smooth behavior for the approximating neural model) [2]

design. robustness (a graceful loss in performance when the network is
affected by perturbations) [3], fault tolerance [4], [5], etc.
NOMENCLATURE Constraints can be classified as application-oriented and im-
gN Data set composed OfpIen_1entation—oriented. With_in the former class we havc_e con-
N(input, output) pairs (¢, y). strfa.mts related to some.app!lcanon features, e.g., ap_proxmatlng
o Vector of the network weights. ability and_ smooth solu_t|on, in thellaltter,.we address issues more
o° Optimal weights. related to |mplementat|on, e.g, minimality, robustness, a}nd fault
A Weights trained o™ . tolergnce. The |mplemeqtat|0n can 'be soﬁware (SW) with code
9(©) = f(O,) Neural network. running on a host machlne_ or reallz_ed with a d_edlca_lted har_d-
'VN T Training error function evalu- ware (HW), e.g., analog, d.|g|tal, optical, or, again, m.|xed as it
ated onz N | happens in HW/SW codesign where the application is suitably
Vv Generalization error. part-itioned between HW and SW [6]. . .
V/(©) = aV(0)/90 Gradient vectorV’ can be either Time to market, rapid prototyping, gnd the.lncredlble.grovvth
Vi or 7. of c_omplex embeqded sys.tems [7] is pushing the microelec-
V() = 82V(®)/8@2 Hessian matrix}/ can be either tronics computer-aldgd design resgargh toward the develppment
Vy or V. of au_tomatlc synthe3|s_tools for de§|gn|ng a problem solutlon,_or
v Vector of weights between the appllcauon,_atav_ery h_|gh abstractl_on Ievel_. Systen"_n—le\_/el des_|gn
hidden and the output layers. [8] is follow!ng this phllqsophy by mtegratmg apphpauon—on—
w Matrix of weights between the ented and implementation-oriented constraints directly at the

application characterization level. There, the minimality and the
modularity properties of a solution are particularly appreciated
since they allow for a compact and modular model description,
Manuscript received July 26, 2001; revised May 6, 2002. This paper was r&¢hich can be passed to the HW/SW codesign compiler for an

input and the hidden layers.
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may be particularly appealing in real-time applications). Fenodels. Model selection (with respect to accuracy) and con-
instance, if we consider a digital very large-scale implemestraints integration are therefore subsequent independent tasks;
tation, topologically simpler network means less silicon arethe designer first optimizes a set of neural architectures and only
a lower power consumption (e.g., think of embedded systemerwards tests and tradeoffs accuracy and constraints to obtain
such as mobile telephones) and faster computation. Modhe best neural network for the application.
larity, carried out at the neuron level, allows treating the neuronNote that this is the key for an easy automatic synthesis of a
or an ensemble of neurons, as atomic units. Such units gagural-based application in which the nonexpert designer has to
then be implemented in parallel solutions by replicating theet few—possibly none- tuning parameters.
basic neuron macrocell, a single neuron in time multiplexed Accuracy, the most important application-oriented con-
architectures (as it happens with sequential code executistrpint, can be estimated with a validation criterion such as
or as specific op-codes whose implementing HW based orossvalidation, k-fold crossvalidation, leave one out or, by
field-programmable gate arrays (FPGAs) might be reconfigensidering neural topologies belonging to the same neural
ured on the fly during the code execution [9]. structure, with selection criteria such as network information
Robustness is important for a different reason. A robust netiterion (NIC) [25], general predicion error (GPE) [26],
work provides a graceful loss in accuracy when perturbatiofs7], final prediction error (FPE), final prediction error biased
affect its parameters. Relevant examples of perturbations @8EB) [28]. Whichever is the selected method, we obtain
finite-precision representations [10]-[12], fluctuations in tha performance degre®; for the envisaged neural network.
production process [13], [14], thermal and ageing effects Inkewise, if we denote byC; a measure of the constraint
analog realizations [15], static and transient faults in physicsatisfaction for the best neural moded; (it can be a vector
devices. Hence, a robust network can tolerate lower accuracynore then one constrain is considered) then each trained
(i.e., reduced number of bits) and be resilient to a class of fauftstwork is characterized by a triple¥(, P;, C;).
[3]. Computational complexity and robustness are surely two
Pursuit of robustness, modularity, and complexity requiréateresting high-level constraints. Computational complexity
ments can be carried out at the application level during trainiegn be simply addressed by counting the number of hidden
by adding a regularization/penalty term to the training cosnits or the network weights. Of course, the designer could also
function so as to bias the solution toward networks possesstansider different figures of merit based on the number of fixed
desirable characteristics (e.g., weight decay for penalising floating point operations to be carried out. Minimality and
large weights [16], high curvature penalizations [2], extendemputational complexity are strictly dependent properties.
Tikhonov regularisers for improving fault tolerance [4], [17], As far as robustness is concerned, results suggested in
etc). Interestingly, a penalty term added to the training functidghe specific robustness/sensitivity literature mainly focus the
implicitly addresses the performance/constraints tradeoff in th#tention on HW implementation with perturbations modeling
sense that the compromise is solved during training witholitite precision representation errors [10]-[14], [29]. In this
any external interaction. direction, we surely agree that a robustness analysis dealing
Differently, but in the same direction, robustness with respegith a single connection removal (see, e.g., [20]) is particularly
to weights perturbation can be integrated during the trainimgteresting for its subsequent impact on power consumption
phase by adding a suitable noise to the weights up-date teransd silicon area. Nevertheless, neuron reduction is even more
The derived neural network becomes less sensitive to weighggevant than synapse reduction for its direct influence on the
perturbation with animmediate positive effect on its final analogetwork topology. Moreover, neuron reduction supports the
implementation (fluctuations in the weights production processodularity concept at the neuron level.
are an example of perturbations [13]). A more general robustness analysis dealing with a large class
A different philosophy suggests tackling the issue off-lineyf perturbations affecting the neural computation must be de-
after the training procedure has been completed. In this caseed to provide effective robustness criteria.
constraint satisfaction is tested directly onto the obtained modeln this paper, we provide a novel sensitivity analysis to es-
and, if possible, improved off-line. Examples in this directiotimate the generalization performance loss induced by generic
are neuron pruning [18] and unnecessary weights remoyarturbations affecting the weights of feedforward neural net-
[19]-[21] which improve accuracy, integrate smoothnessorks of regression type. The interest for such networks
requirements and reduce the network complexity (minimaligomposed of a nonlinear hidden layer and a single linear
constraint). In the same direction [22] and [23] suggest hosutput derives from their universal function approximating
to properly dimension the number of hidden units of a neurability [30].
network, hence, following the minimality and modularity To our knowledge, the suggested sensitivity analysis pro-
directives. Another example is network augmentation [4], [24jdes in a closed form, for the first time in the related literature,
where a suitable replication of the network topology allows fapproximate relationships between training error, effective
improving the fault tolerance ability of the neural network byiwumber of degrees of freedom used by the neural network,
means of spatial redundancy. strength of the perturbation and variation in generalization
In this paper, we follow the offline approach: the compromiserror.
between accuracy and constraints satisfaction is carried out aloreover, the suggested sensitivity/robustness analysis re-
the end of the training phase by inspecting and ranking the d&xes the noise-free assumption of [11] and [12], it is not
curacy and the level of constraints satisfaction of the obtainegtjuired to consider large networks as assumed in [29] nor a
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large data set needed in [10] to make the mathematics mordraining neural modelj(®) requires minimization of the

amenable. Only a sufficiently large, but limited, data set mean-square error loss function

required. Finally, two new robustness criteria can be derived N

from the sensitivity analysis which characterize the inherent ; 1 R

robustness degree of the trained neural model. Vv (0,27) = 2N Z(y - 9(0))* (2.1)

The structure of the paper is as follows. Section Il briefly =t

describes the model selection criterion fromwhich the suggest&ghluated over the finite set of (input, output) pairs

generalization-based sensitivity analysis is derived. Section IlI

introduces the concepts of weak and acute perturbations to ZN ={(z1,11),...,(zN,yn)}. (2.2)

characterize some relevant classes of perturbations which lead,

in Section 1V, to the robustness criteria. Section V briefly For their nature, regression-type neural networks constitute a

introduces the parallel between robustness and fault toleramested architectures family/ : M; C My C M3 C --- C

and identifies those perturbations not affecting the networklg,, C ---., wherek represents the number of hidden units:

performance. Finally, the model to be chosen is the one solvisgmplex architectures degenerate in simpler ones with a suit-

the compromise accuracy/minimality/robustness according dble choice for weights.

a tolerable tradeoff. An example of the selection procedureTo develop the sensitivity analysis based on the performance

is given in Section VI. loss, we consider the model selection procedure suggested in
[25]-[32]. To make the mathematics more amenable we do not
consider regularization terms and high-order contributions; as a

Il. M ODEL SELECTION, ACCURACY AND MINIMALITY result the different theories can be grouped as follows.
The neural computation implemented by the envisaged neuraPenOtae bg@landeznmat.e .Of the u-nrlfnownﬁpptlmallpar_arrpeter

family can be described as vegtor@_ obtained by trainingVZ; with an efficient algorithm
which minimizes (2.1). If we assume that inputs and noise are

unrelated random variables and by considering a quasi-Newton

Hessian (reasonable assumption according to [33] inGhe

n

§(0) = Z”"O" (wi,2),0 = [v,w1,... w4 neighborhood), we have from [25], [26], [28], and [34] that
i=1 9
_ /A _ o°p 1
ElV{ie)=Ve )+ —+0|(-— 2.3
wheren andd denote the number of hidden units and inputs, re- [ ( )] (©7) + 2N + <N2> (2:3)

spectivelyw, of scalar componentis= [vy,. .., v,], represents A N o on O%p 1
the weights vector between the input and the output layers and E [VN (97 z )] =V(©°) - aN T 0 N2 (24)
w the weights matrix between the input and the hidden ones

(w = [ws,...,wy], w; being the column weight vector con-where
necting theth hidden unit of outpu®; with the input vector). B 1
Without loss of generality we considéX; (w;, z) to be the hy- V(©e)=-F [(y - g](@))ﬂ . (2.5)
. - . 2
perbolic tangent function applied to the scalar product between
w; andaz. In the above formulas, expectation is taken with re-

The column vecto® contains all the network weights; forspect to all theZ" sets obtainable withV training pairs;
ease of notation bias terms are not considered here but carpbe= rank(V'(0°)) with V'(0°) = (92V(0))/002|e-
easily included in the analysis. is the effective number of parameters used by the neural

We denote byj = f(©°,z) the “true” unknown neural net- network to fit the data (and it is not simply the number of the
work with the optimal weight©° and bye = WN(0,0%) degrees of freedom of the neural network). Despite the fact that
a stationary i.i.d. noise of unknown variance influencing addgerivations of (2.3) and (2.4) are quite complex and outside the
tively the true neural network so that= 3 + . We start by goal of the paper, we can provide an intuitive interpretation
assuming that perturbations affecting the network weights atethem. De facto} (©°) represents the true validation error
small in magnitude; the hypothesis will be partly relaxed latexf the optimal neural network whil&[V(©)] represents the
on. average validation error associated with all possible data sets

The assumption requiring that the true function belongs tmmposed ofV data. Equation (2.3) states that if we have a
the set of functions represented by the neural network may lbaited data set then the averaged generalization error is greater
a strong hypothesis when a very limited data set is availabtban the optimal one\{(©°) term). Apart from high order
On the other hand, the assumption can be accepted whendbmetributions, the increment in generalization error is due to the
dimension of the data set becomes larger. Such a hypothesis ndlise in the datas(’ term) and the fact we have configurgd
be used to develop the approximated formulas for estimating tthegrees of freedom by using a limited data set of cardinality
performance loss of the neural network subject to perturbationdnstead, (2.4) addresses the relationship between the gen-
in its weights and not necessarily must be considered for mo@edlization error of the true neural model and its averaged
selection; more comments regarding the relationship betweesining error. Basically, it states that the averaged training
the model bias and the validity of the approximated formulasror is smaller than the validation one of the optimal model:
will be given at the end of the section. the training error is an optimistic estimate of the validation one.
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When we have a large training set, the correction terms vanisioss-validation based techniques can be used instead of (2.9)
and the training error becomes a good estimate of the validatias model selection criteria.
error. We focus again the attention on (2.8) forits relevantrole in de-
By manipulating (2.3) and (2.4) we obtain that riving the performance-based sensitivity analysis. We note that
the generalization ability of the trained neural network depends

2 —
7 (0] _ 5 7N op 1 onl(V(©°) — Vx(©°)) which, even if unknown, is function of
E [v (@)] —E [VN (@,Z )] + 55 +0 <N2> (2 NIVIEY ~

As such, when the neural network is affected by perturbations

8o thel(V(0°) — Vx(©?)) term is constant, it does not con-

Iarlzatlon.term, can be found in [27] where two d9f|n|t|ons fo{rribute to the variation in generalization ability and the pertur-
the effective number of degrees of freedom are given; when BStion analysis of (2.8) coincides with that of (2.9)

regularization terms are envisaged results coincide anywayvylt he assumption requiring that the application to be learned

(2.6). E_ql_Jat_ion (2'6) states that the av_eraged training error 'E?% be described by a neural network (completeness property)
too optimistic estimates for the generalization error which MUSti e most critical one and it has an immediate impact on the

. o .
beDIri]rZi:eti/si(rjo?‘rf] t?ti Z/e ]Xni?(;;eif; tlfr::jnér the assumed hy§ensitivity analysis. The hypothesis is not severe when we have
potheses, we have from (2.5) that (0°) = o2. By neglecting a largeN. In addition, the hypothesis should hold in many ap-

i . .2 plications ([27] claims that that regression-type neural networks
the high-order terms in system (2.3) and (2.4) and substltutlﬁ . : )
o2 with 27(6°) we can remove the dependency Br{©°). 88n be regarded as quasicomplete since they are capable of ap

. . - . ) proximating a large class of functions).
gg] e[gg]wnh the final prediction error like expression [26] If the neural model is incomplete, as it might happen, then

the analysis is different. We study first the case in which the
. oA\ N+p neural network “is close to” the process generating the data (the
E [V (9)} =FE [VN (97 4 )] N—p (2.7)  modelis guasicomplete). The estimation error is biased so that
y — #(0) = n = ¢ + p wherep is the zero-mean bias term
Equation (2.7) states that the averaged validation errordsvarianceE[p?] = 2. If we carry out the analysis leading to
larger than the averaged training error with an amplificatiof2.3) and (2.4) we obtain that the second term of (2.6) becomes
term depending on the number of available data and the numbetp + T'(6,0°))/N with T(5,0°) < ps2. Therefore, if the
of degrees of freedom used by the neural network to learn thias/noise “noise to signal” ratio i¥’/0? < 1, i.e., the bias
input/output relationship. contribution is small, we can neglect th¢s, ©°) term and (2.6)
Unfortunately, we have only ong”" data set and, therefore,is still valid.
we cannot take the average required in (2.7); this introduces &onversely, in the case of a strong bias, a correction term
statistical fluctuation, function of the random variabl¢o®) —  must be added to (2.7) which is a nonlinear functiorpof?
Vn(©°). Moreover,p = rank(V”(6°)) is unknown but it can and N[28]; anyway, for a sufficiently largéV such term should

N

A more general formulation, which takes into account a reg

be estimated ag = rank(V{(©)) (see also, [28]). vanish. If we cast serious doubts about the fact the model is
Finally, the generalization ability of modé{; becomes [25], complete then we should consider the GEN criterion [26] to
[32] computeP; or crossvalidation-based criteria.

o N N+p ) Anyway, also for the incomplete case, we will consider the ro-
% (@)) ~Vy (@)) — + 1 (V (0°) — Vy (@)0)) . (2.8) bustness criteria derived from (2.9). This relies on the intuitive,
N-p but unorthodox, assumption that the punctual bias term added

Since I(V(0°) — V(©°)) is an unknown function in to thg noise is eql_JivaIent toa realization of a different noise
V(©°) — Viy(©°), dependent only on the particular realizatioHV'_th |'ncreased variance. In_thls case, the sugge;ted robustness
of ZV, it is not possible to estimate the generalization abilit riteria are pr_lly approximations but become consistent whien
of the neural network by using (2.8). ends.to mﬂmFy. L , L

Anyway, such a term is constant along the model hierarchyWh'C,hever is the vahQauon/seIec_tpn _cr_ltena, the best model
M. As done in [28] we can derive a model selection criterioficcording to accuracy is the one minimiziftg

by considering the biased accuracy performance degree for eaclrﬁ we _rank the (;, I)? R,,-,)_ triplets according to t_he perfpr-
mance indexp;, the minimality under the modularity require-

model
ment can be simply considered. In factHf is the performance
A A\ N+p index of the best model andis the tolerable loss in accuracy
P,=P(O)=Vy|0O . o . '
( ) N ( ) N—-9p the smallesyjth neural network satisfying, — P; < (3 is the
P :rank(\/;) (2.9) one to be selected. Such model leads to-a; hidden neurons

gain in topological complexity.
which differs ofl(V (©°) — Vx(©°)) and approximations from
the true generalization value. Valugss given by (2.9) can be
used to select the best model, which is the one characterized
by the minimum value of the performance index (it must be The robustness of a given neural network affected by per-
clear thatP; does not represent a measure for the generalizarbationé® on its performance can be studied by means of a
tion ability of the model). As we already discussed in Sectionsgnsitivity analysis applied to (2.8). Singés not a continuous

I1l. WEAK, ACUTE PERTURBATIONS AND ROBUSTNESS
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function of ® (being the rank of a matrix) we cannot simply Our analysis is different and represents an extension. Equa-
differentiate the (2.8). Denote Wy the variation in rank asso- tion (3.2) estimates the variation in accuracy induced by any
ciated with6® then kind of perturbation affecting the weights.
It is interesting to realize that if perturbations affect only
= (A = (A A N +p+op then we can remove the small perturbation hypothesis and (3.2)
8J2V (0460 -V ([(O0)=2VNy[O+60) — ) i
( + ) ( ) N ( + ) N —p+ op holds for any perturbation magnitude; conversely, for perturba-
N\ N+p tions affectingw the small perturbation assumption cannot be
VN (®> N—p (31 relaxed.
The rest of the section is devoted to investigate the effect of
By expanding with Taylo#x (O + §©) around® and re- 60 on (3.2), and (3.3), by focusing the attention on those rele-
membering that the gradient is null since the training proceant perturbations which do not modify

dure ended in a minimum, we obtain thmr(é) + 60) = Definition: We say that a perturbatiaf® is weak if it does
VN (0) +1/2607V}[(©)56 which, inserted in the above, pro-not eliminate weights.
vides The immediate consequence of the definition is that a weak

perturbation does not change the topological structure of the
network. If the perturbation is not weak, say strong, e.g., with
respect ta, the structure of the network changes and it might
scale down the hierarchy (as it happens with the PCP technique).
wheres? = Vy(©)2N/(N — p) is an estimate of the noise The impact of strong perturbations must be taken into account
variance (e.g., see [28]). separately and their effect must be evaluated with (3.2); for in-
It is useful to express (3.2) in a canonical form which decogtance, if we remove weight thens.J = (1/2v7a; j(N +p +
ples the dependencedrandw. From the quasi-Newton approx-1))/(N — p — 1) wherea; ; is theith diagonal component of
imation for the Hessian we have tHaf (©) = 1/N Y. V,V7, the Hessian.
where the gradier¥; = 83}(@),x)/8®|m7 o isthen(d +1)-di- Lemma 1: A continuou$ perturbationy® (e.g.,6v or dw;)
mensional column vectoN; = [O;;v10] ;- v,0], ;¢] IS Weak, with probability one (w.p. 1).
(components are separated by semicolons for clarity). InThe lemma is intuitive. In fact, strong perturbations imply
particular, the first entry refers to differentiation with respedtonnection removal. The strong perturbation set is discrete and
to », the following d entries tow;s. o, is the first deriva- containszle (]?) =2F —1, dim(©) = k points, each of
tive of the jth hidden neuron output evaluated on tith v
input pattern. In the canonical form the Hessian becom
VN(®) = ©,H,0, where H, = 1/NYL V,V7T,
VI = [0F; 0 ;2T;--- o, ;zT] and®, is the diagonal matrix
of ordern(d + 1) such thatliag(©,) = (1,;v';---v"), i.e.,
n ones followed by the’ vectors composed af components
equal tov;. In the canonical forn®,, contains only information
aboutv while H,, only information aboutw. Note thatV{/(©)
is a semidefinite positive matrix iff,, is semidefinite positive.
Finally, the canonical form for (3.2) becomes

N +p+op 526p
N—-p—¢p N-p—op

1 ~
00 = S50V (@) 50 (3.2)

which is associated with a connection removal combination; the
Egbesgue measure of such set is anyway null.

Definition (Taken From [35]): We say that the square matrix
A, obtained by perturbing the matrik is acute (and the asso-
ciate perturbation is said to be acute)liffi4, . 4 rank(A}) =
rank(A).

With A, — A we are assuming that, according to some mea-
sure (e.g., the variance of the perturbation or its magnitude), the
perturbation affecting! tends to zero.

As a consequence of the definition, an acute perturbation does
. 5 not change the rank of a matrix.

N+p+op G"p (3.3)  The concept of acute perturbation is powerful. In fac6f
N—-p—¢ép N-p-—oép is acute thersp = 0 and (3.2) nicely reduces to

Equations (3.2), and (3.3) state that the effecé®fon the
variation in generalization performanéd is the sum of two
contributions. The first term is related to the sensitivity of the . :

. . . As a main consequence, an acute perturbation never
neural network (Hessian matrix) and depends on the partlcuéar

structure ofM . Note that such a term is nonnegative being thqgcrgases t.he training error and does nqt improve the gener-
) o " alization ability of the neural network. This follows from the
quadratic form semidefinite positive.

The second term is related to the presence of noise andfﬁ(s:t t'hat under the small perturbation hypothesis there it exists

sign depends ofip. A decrement inf© implies a reduction in & heighborhood 0 so that(oViv((Zy, ©)/96 = 0 and that

. ) . "
the effective number of parametet® (< 0). Whenép < 0 and Vi (©) s semidefinite p0§|t|ve. - .
o : The next theorem provides conditions under which perturba-
6J < 0 we have that the reduction in model variance more then . .
ions affecting separately andw are acute. In the following,

mpen he incr in the training error, leadin lower . o
compe sategt €increase the training error, leading to a ON& assume that there are not always saturated hidden units in
expected validation error.

This case is interesting and can be related to the principﬂ?fe sense that their output is constant for each input pattern. If

. . . is is not the case we have first to reconfigure the network by
component-pruning (PCP) technique suggested in [18]. In faf:emovin the saturated neurons and &dd;o; to the bias of
under the assumptialN > p > 6p, the authors identified those 9 773
v;5 whose removal is associated witld & < 0. \We say that a perturbation is continuou®if(§© = 60) = 0,60

1
o0J = §6®T®,1,Hw®v6®

N+p
N-—p

5] = %5@%@ (é)) 50 (3.4)
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the output neuromg s ando; s are the weights and the outputs H, and the perturbation matrixoH, (associated with

of the removed neurons, respectively). perturbations 6w or 60O) are symmetric matrices by
We also envisage application of a principal component anabnstruction. We invoke the Weyl's theorem [35], [36]

ysis (PCA) technique [30] to have linearly independent inputsvhich states that for each eigenvalue the relationships
Theorem: Amin(0Hy) + A(Hy) < AM(Hy p) < A(Hy) + Amax(6H, ) holds.

As a consequence, by reminding thati, (6 H,,) = 0, we can

write that|A\(Hy ;) — A(Hy)| < Amax(6H,) = ||0H,||2. The

rank degenerates if at least onéH, ,) goes to zero which

a) If fv is a weak continuous perturbation, th&nis acute
w.p. 1.
b) The continuous perturbatiofw; is acute w.p. 1 iff the

inducedH, = (1/N) 2~ , O(;)0(x;)" is acute. would imply [A(H,)| < [[§H,||2. Since the relationship must
¢) If rank(H,,) — rank(H,) = k, then|ép| = k(d + 1). hold for any eigenvalue off,,, rank degeneration cannot occur
. if we require thal|6 H,||2 < Amin(H.)-

See the appendix for the proof. _ _ In a way, the lemma is strictly related to PCA and other
_ Corollary 1: A continuous perturbation® is acute W.p. 1 techniques connected with hidden unit removal [21], [30]. In
iff H, is acute. _a principal-axis representation, where each eigenvalue is on

The corollary directly follows from the theorem. Infact, if Wejts cqordinate axis, the perturbation does not annihilate the
considerd® = [6v; w, ..., dwy,] and the canonical form for \eaker dimension of the space if the spectral radius of the

the Hessian we have that perturbations affectirrge indepen- perturbation has not enough “energy.”

dent from those affecting. The proof follows from statement " ¢\ye consider a digital realization in which the perturbation is

a) since the acute perturbatién does not change the rank of,sqqciated with quantization (e.g., rounding or truncation [10],

the Hessian w.p. 1 and from b) since the rank may change iffy}) of the weights, it is reasonable to assume that quantiza-

H, is acute. ) ) o tion does not remove any weight and, hence, quantization is an
Corollary 2: A generic continuous perturbatidi® is acute 5 te perturbation. Also, in analog implementations where com-

w.p. 1 if rank(H, ) is full, otherwise, the perturbation is noty,nens (e.g., resistors or capacitors) are affected by the produc-

acute w.p. 1. tion process we have that the associate perturbations are acute
The consequences coming from the theorem and subsequgfdy are not acute only if the element breaks; in such a case we

corollaries are important. In fact, the theorem states that all p@&ye to consider (3.2)].

turbations are acute w.p. 1 under the assumption that hiddenq the following section we will always consider acute per-

units are linearly independent. As a main consequence, the (ithations consequent to a proper hidden layer dimensioning;
holds. Conversely, i, has not full rank, a generic continuousherefore, we can assume that the ranfis full.

perturbatioy© will increase the rank w.p. 1. This is intuitive if

we think that a continuous perturbatién will make the rank
of H, full w.p. 1. V. ROBUSTNESSCRITERIA FOR FEEDFORWARD NEURAL

The rank degeneration arises only with subtle perturbations NETWORKS

év andéw which introduce a linear relationship among hidden | the section, we introduce two criteria for evaluating the
units; such perturbations are strong since they modify the strygpystness degree of a feedforward neural network. The first
ture of the network but the probability of extracting them for @riterion addresses the worst case perturbation (WCP), namely
continuous perturbation is again null. it quantifies the maximum loss in accuracy associated with a
Note that we are not limiting the analysis to static perturbgeneric acute perturbation. On the basis of the magnitude of
tions, e.g., time-invariant perturbations since we can apply ttie maximum error we decide whether tolerating or not a class
method also to dynamic perturbations. In such a case, the egpperturbations which might affect the neural network during
on the network output vanishes if the perturbation is transienis operational life. Another interesting case is the mean case
This observation is of some relevance in a physical implgerturbation (MCP), which guantifies the average increase in
mentation where transient faults might affect the weights, asgéneralization error associated with acute perturbations.
happens with analog implementations (e.g., see [13] for a soL.emma 3: Given an acute perturbatiagi® then0 < §J <
lution to this problem). Such faults are extremely difficult tq1/2)\.x(Va")[60|>((N + p)/(N — p)). The equality holds
be identified for their spurious behavior. If we select a robugthens® is a vector parallel to the eigenvector associated with
neural network, their effect on the generalization error will bg,..(Vx").
attenuated. Since (3.4) is a semidefinite positive quadratic form, the lower
We note that perturbations affecting inputs and internal corbeund in accuracy is 0. Conversely, the maximum loss in accu-
putation for hidden units are equivalent to static/transient pertuacy arises when the perturbation vect® is parallel to the
bationsbO affecting the hidden units output. Point b) of the theeigenvectoru,_,,... associated with the maximum eigenvalue
orem allows us to extend the validity of the analysis to a wide,.x of V/[37].
set of perturbations affecting the neural computation. As such, Lemma 3 states that the worst perturbatio®is=
To this end we provide a lemma granting that a perturbatigfi©®|u,_max and quantifies its impact ofi/. Now, if a trained
60 (which therefore covers all perturbations affecting the conmeural network exactly contains a smaller trained neural net-
putation in the input/hidden layer) is acute. work then, by the inclusion principle [36], the larger networks
Lemma 2: Denote byA i, (H,,) the smallest nonnull eigen- have a\,,.« larger than the one associated with the smaller net-
value of H,. Perturbatiord H, is acute if[|6 H,||2 < Amin(H,) work: such larger models worsen the WCP.
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Lemma 4 addresses the MCP issue by evaluating the averag&he expression shows an interesting relationship between the

loss in accuracy induced by a class of perturbations. information provided by the data and the number of hidden units
Lemma 4: Let $6© be an acute perturbation with.d. com- (the sum is now extended up to index i.e., the number of
ponents of variance?,, then hidden units). Such a relationship becomes much more explicit
o when we consider a uniform distribution for activation values or
Esol6J] = Ué@N +p Z inputs as we do in the following e_xamples. In tth case, we can
P show that the average perturbation increases linearly with the

number of hidden units and, therefore, larger neural networks
The proof follows by taking expectation in (3.4) with respect ¢ |ess robust.

to the$© domain
1 N+p

Example 1: Uniform Distribution for Neuron Activa-
Ty (¢ tions: We assume that the activation valué of a generic
Eé@ [56 (6) 56} hidden neuron is uniformly distributed within the symmetric
1 N —|—pE 7 (6) 56567 interva_l of extremen, that the activa_tion func_tion is t_he hy-
ToN_p e perbolic tangentl'gh(X) and that hidden units are linearly

Esol6J] =

N+ independent. It is simple to prove, by integrating with the
( VN NN Ea [595@T]> variable substitutior?” = z and then by parts, that
1IN +9p 1IN+9p Tgh(a)
:a(%@EN—_ﬁtr(V' N) =05 Z)\ E[X?]=1-—"— (4.3)

which represents the variance of the neuron output. The evolu-

The first manipulation follows from [37] and [38] while . . o L
tion of the function with respect ta is given in Fig. 1. If the
the second is associated with the fact that expectation an .

nterval extreme is abowe = 5, then the variance of the output

trace operators are linear and that expectation is taken oVEr
is‘above 0.8.
the 6© dominion (which is independent fro®).
The eigenvalues sum is the trace of the Hes&laassociated
The lemma covers the interesting case of perturbations as:
with the hidden units namely

sociated with quantization of the network weights. In such W
case, the small perturbation hypothesis holds and the noise vari- n Tgh (o
ance associated with theleast significant bits truncation is tr(H)=> 1- — =0 (4.4)
279/3 [11]. Therefore, lemma 4 can be used to dimension the i= ’
word-length for coefficients by consideriad as figure of merit If each unit is always activated with a sufficiently largethen
and not the function output as suggested in [10] and [29]. Givetie trace grows at most linearly with the number of hidden units.
atolerable loss in performance and an application we can obtgisr ) ,,... we can write that
the ¢ satisfying the loss accuracy requirement. o (H

In an analog implementation, if the tolerance of a component M < Amax <tr(H) — 1 < Apax < O(n). (4.5)
due to the production process assumed to be ruled by a Gaussian "
distribution isT, then the standard deviation of the Gaussian Whenn increases the maximum eigenvalue of the Hessian is
is 3T ando2, = 972. Given a tolerable loss in performanceppperly bounded by a linear growth.
according to Lemma 4 we identify the acceptabland, hence, Example 2: Uniform Distribution for InputsAs a second
we characterize the parameter production process. example we consider a regression-type neural network mapping

Two criteria for measuring the robustness of a neural netwodly = y(u),y,u € R! function. Inputs are uniformly extracted
derive directly from lemmas 3 and 4. The first criterion providegsom the -, ar] interval (e.g. oy = 1). If the generic neuron
arobustness degree on the basis of the WCP, the second by t@s-a vectow = [w, 3] wherew is the weight connecting the

sidering the average case MCP input andg the neuron bias, we obtain that
N+p 1 p2a _ o2b
Rwcp =Amax (V) —— 4.1 EX?Y =1 4.6
WCP (Vx) N_p (4.1) [X7] + war | (14 %) (1 + ) (4.6)
Ryicp = Z X (V) N+ P. 4.2 wherea = —way + §,b = w+ . If we assume inputs normal-
N - ized in the [-1, 1] interval, then
Note that the criteria do not take into account the magnitude e2ai _ g2bi
of the perturbation since we are interested in a measure of the tr(H) =n+ Z 1+ €20 (1 + e2bi) (4.7)

robustness degree for the neural network.
We can weaken some hypotheses or obtain finer relationships= —w; + 3,b; = w; + (. Again, if w; s are sufficiently

in Lemmas 3 and 4 by specialising the perturbations to some ralrge then, as in example 1, the asymptotic behaviar Q)

evant cases affecting weighisandw and, therefore, the com- and )., shows a linear behavior.

putation locally at the neuron level. The adherence of such expressions with theoretical results
As a direct consequence of Lemma 4 we have thatiah holds even with lowV s.

perturbation with variance?, affectingw is acute w.p. 1 and  To show this, a set of experiments has been carried out on a

Esp[6J]) = 050(1/2)(N 4+ 9) /(N = D) Yoi ) Niw- teacher neural network with four hidden units; data have been
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Proof: Since the perturbation is acute we have
5.7 = 6070, H,0,60- Y TP
2N —p

The proof follows immediately since the presence of the per-
turbation directly affects the generalization error. On the other
hand, if the perturbation is not acute, its effect on the general-
ization performance is not visible only whéd = 0. This only
happens if the perturbation spans the null space generated by
N (V). The probability of generating a continuous perturba-
tion belonging to a subspace, is anyway null.

We could think that by increasing the number of hidden units
we introduce some sort of redundancy and, therefore, the net-
work becomes more fault tolerant with respect to perturbations.
Note that the attention is on fault-tolerance, not on robustness.

Lemma 6: No improvement arises by increasing the number
of hidden units with w.p. 1.

—4—Lmax_30 In fact, by increasing the number of hidden units we may only
—#—Sum_eig_30 increase the dimension of the null space; nevertheless, the prob-
Lmax_50 . . . .

5 Sum_sig 50 .ablllfcy of not obgervmg the eff_ect .of a cgntlnuous perturbatlon
——Lmax 200 is still zero. Again, this assertion is not in contrast with [4] for
—e—sum_eig 200| the different theoretical setup and the assumed fault mode.
—+—Lmax_500

—=— Sum_eig_500 VI. SYSTEM-LEVEL NEURAL DESIGN. AN EXAMPLE

Hidden Units The experimental section shows an example for selecting a
modelM; within M in a constrained environment.
Fig. 2. The evolution oA (Lmax) and}; A; (Sum_eig) w.rt.increasing  The application refers to the development of an embedded
v neural device for classifying numerical digits (from 0 to 9); the
MNIST database has been considered for training and valida-
extracted from a uniform distribution and a white Gaussiaion. As such, a digit is represented by a288-pixels matrix
noise WGN(0,0.01) has been added to the network output. in a 8-b grayscale coding. The size of the network, and hence,
We considered different training sets with increasing cardfs complexity, is relevant since there are 784 input neurons. The
nality N = 30, 50, 200, and 500. For each data set, trainiri§iaining set was composed &f = 800 training samples ran-
was performed until the gradient vector was null. Fig. 2 shov@#®mly extracted from the database while a set of 1000 patterns
the evolution over different hidden units of the maximum eigefas been considered for validation purposes.
value and the sum of eigenvalues (tracéff Apart from fluc-
tuations we can appreciate the linear behaviox,gf, and that
of the eigenvalues sum. We consider a target digital architecture in which a neuron
is the atomic unit implemented by means of a digital macrocell
of fixed structure stored in an appropriate library (the modu-
larity at the neuron level constraint follows). Let us image that
We say that a digital circuit is fault tolerant if the occurrencg high-level estimate of the power consumption for the neuron
of errors (e.g., induced by defects or transient signals) is maskfielcrocell limits the complexity of the neural network which

A. Model Selection in a Constrained Environment

V. APPLICATION-LEVEL FAULT TOLERANCE

at the device output. o ~must not exceed = 17 hidden units. The macrocell is param-
We can extend the definition to address non digitalterised in the number of bits necessary to represent weights;
computation. this indirectly controls the silicon area usage (saving bits im-

Definition: We say that a neural network is fault tolerant wittplies saving full adders in a digital implementation). A good
respect to a class of perturbatidisf their effect on the chosen robustness degree is therefore highly appreciated since it allows
figure of merit is null. for minimizing the inner size of the neuron. Therefore, from

The fault-tolerance requirement can be weakened if we shigh-level specifications, the main features for the application
that the increase in error ahis below a predefined threshold.are accuracy, modularity and robustness.

This aspect has been nicely addressed in [4] where the authorBifferent models, with hidden units ranging from 5 to 17
do prefer to speak about small perturbation fault tolerance ratth@ive been trained with a Levenberg—Marquardt algorithm on the
than stuck-at faults; as a consequence they implicitly considesiining data. To test the impact of different training set of cardi-
the robustness features of the neural network as studied in prality N we considered 3@y s so as to estimate the statistical
vious sections. behavior of the relevant quantities involved in the analysis. In

Lemma 5: An acute perturbation® does not introduce a the following plots we indicate with a circle the average value of
generalization loss iff© belongs to the null spad¥ (V) or, the envisioned quantity and with a continuous interval its fluc-
equivalentlyp©0,, belongs to the null spad¥(H,, ). Ageneric tuation overZy s (the length of the whole interval is a standard
continuous perturbation introduces a generalization loss w.p dgviation).
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. . . Fig. 6. Evolution ofRwcy.
Fig. 3 shows the evolution gffor each trained model of the ' © voltion offwer

hierarchy. Note that the effective number of degrees of freedom
significantly differs from the number of degrees of freedom ahodels withn = 16, 17, and, to some extent, 14. For such
the network (for modelM,, p is around 580 against 11 760models, the difference in accuracy is almost negligible and we
weights available). can consider them to be practically equivalent according to
Since different figures of merit can be considered for mod#ie tolerable losg; other requirements can now be integrated
selection we consider in this experiment both FPE [as definedtin characterize the final model. The minimality criterion is
(2.7)] and crossvalidation (of course, FPE applies solely to tiramediate and would suggest to consider the- 13 hidden
training set while cross validation to the validation one). units network according to FPE and the= 14 one from
The evolution of FPE and the validation performance estiross validation. If other constraints, e.g., robustness, must
mated according to crossvalidation are given in Figs. 4 andld® integrated then we have to consider all the performance

respectively. equivalent models and tradeoff minimality versus robustness.
In the following, we consider the average behavior of the Rwcp andRyicp criteria of (4.1) and (4.2) have been there-
guantities for discussion. fore computed and plotted in Figs. 6 and 7, respectively. The

Itis interesting to point out that the behavior of the two moderiteria show that in this application we do not improve the
selection curves is similar and that FPE underestimates the vabustness indexes by increasing the number of hidden units.
idation error. This effect has been pointed out in [27] and it is We have that all networks in the 13-17 range are practically
due to the neglected high order terms in obtaining (2.6); howeuivalent according t@&wcp While My, is the most robust
ever, we remind that the bias discrepancy does not affect thedel according to indeRycp. We can integrate minimality,
selection criterion. accuracy and robustness requirements: if minimality is more rel-

By considering FPE, the model to be selected accordingédwant than robustness and accuracy then the best model to be
accuracy are the ones with= 13,14,15,16, and 17 hiddenselected for the application &/, M7 otherwise. We select
units. Instead, if we consider crossvalidation, we should seledh 4, for subsequent analysis.
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B. Estimating the Accuracy of the Suggested Theory

In this last section, we wish to study the effective impact ¢;
perturbations o/, 4, verify the goodness of the suggested peuz
formance loss formula (3.4) and the test the impact of the sm£
perturbation hypothesis on the sensitivity analysis.

The experiments have been carried out by considering a se
50 perturbationg® uniformly extracted from thef279,279]
interval forq = 3,...,9 and affecting the network weights (by
inspecting the network weights only one bit is necessary
represent their integer part in a fixed point notation). The chos € 1o} - N 1
parameterized perturbation interval models generic bound$
perturbations randomly affecting the weights. * ol T - BB — -0 ]

If we have in mind a digital implementation thencan be
immediately related to the truncation and rounding operato 0
In fact, in the truncation case, it implies that we remove all bii 4 5 6 7 8 9 10 1 12 13
whose positional weight is below 2. In analog implementa- Bits to represent the weights
tions V.Ve Slmpl.y assume th.at weights are affected by gene”c pflr-. 9. Statistical behavior of. w.r.t the bits number.
turbations limited to such interval. Of course, a Gaussian mo el
can be adopted but does not change the validity of the method.

Fina"y, to represent the network Weights in atwo’'s Comp|é0 modelM,4. A more correct index to validate the theory and
ment notation we nee?l+ ¢ bits; the number of bits presenteddentify the effectiveness of (3.4) in estimating the performance

50 1

age Relative Estim

in the following figures must then be intended as such. loss is

In '_[he first experiment we study the impact of per- [Jms (é)+6®) ~ e (é)} (8]
turbations affecting the weights of the network perfor- 9. = 100.
mance; in particular, the performance loss is estimated — ° Jeros (@)
with crossvalidation .J...s. More in detail, we refer to

model M, and we consider as performance loss index The statistical evolution of. with respect to the number of

Y = [Jeros(O 4+ 60) — Jeros(0)]/(Jeros(©))100. The evolu- equivalent bits is given in Fig. 9.

tion of 9 with respect to the number of bits is given in Fig. 8; the We appreciate the fact that the estimate is quite good and, as

notation in the plot is the same used in the previous subsectiench, robustness analysis derived from (3.4) is reliable.

We realize that we need at least 8 b to grant a performance losés we could have expected, when the perturbation interval

below 3%. becomes too large (small bits), the error increases rapidly since
The second experiment aims at verifying the accuracy of theights are strongly perturbed. In such a case the small pertur-

suggested approximated formulas by investigating the accurdation hypothesis does not hold any more and the estimate pro-

of (3.4). vide by (3.4) diverge from the “true” one. We surely have that
In particular, we have to estimate the discrepancy between the theory provides a good estimate for the performance loss

variation in generalization error as estimated by (3.4) and thdth a number of bits larger than 7. Finally, in this application,

effective variation in accuracy estimated with crossvalidatidoy integrating results coming from Figs. 8 and 9 the optimal rep-

[Jeros(© + 80) — Jeos(©)] — [6]]. The analysis still applies resentation of weights is on 8 b.
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VIl. CONCLUSION

The paper addresses the system level design of feedforwark!
neural networks in a constrained environment. Constraints
address the topological complexity of the network, accuracy
and robustness issues. neural-network selection is based
a relative accuracy performance based on a finite data set
framework. We show that the minimality requirement naturally 4]
derives from the accuracy figure of merit. Two criteria are
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APPENDIX (8]

The theorem is proved in three steps. (9]
Statement a)A perturbationsv can only affect the®,, ma-  [10]

trix of the canonical form. Ifév is weak, then the perturbed
O, = 0, + 60, matrix will keep being non singular since [11]
no weights will be removed. The proof follows from the Inertia
theorem [15] which states that the inertia, i.e., respectively, thﬁZ]
numbers of negative, null, and positive eigenvalues of matrix
equalise the inertia of matriX” AX iff matrix X is nonsin- 13]
gular. When we apply the inertia theorem to our problem, Wé
have thatrank(Vy;) = rank (0,,H.0,,) iff ©,, is nonsin-

gular (e.g., we do not introduce null eigenvalues) for the diagIM]
onal structure oB,,;,.

Statement b) From the Inertia theorem we have that [15]

p = rank(Vy) = rank(Hy). We can expressi,,
asH, = (1/N)X¥, vVl AAT, where A = [16]
N~Y2[Vy,V,, ..., Vy]and have thatank(H,) = rank(A). 17

If H, degenerates in rank, so it doHs, and the first part of  [18]
the proof follows. In fact, if there it exists a linear combination (191
among the hidden units’ outputs then there is also in the rows of
A from the structure oF; = [0;; 0 ;x; ... 0, ;x]. Infact, since  [20]
the activation function is the hyperbolic one we have that that
the gradient’; ; = 1 oii can be directly expressed as function [21]
of the neuron output. If the hidden units are linearly dependent
the rank ofA degenerates. Note that the same property holds if2]
the activation function is the sigmoidal one.

We have to prove that the opposite holds, i.e., that if the ranleS]
of A degenerates then so doHs and there are linear combi-
nations among hidden units. : [24]

Again, by inspecting the structure of tR& s, under the hy-
pothesis that inputs are independent and that hidden units do not
saturate, we havigd+ 1) independent relationships riink(V)
degenerates, say poit means that some of the= [(d+ 1) re-
lationships degenerated so that I(d+1). From the structure

of the V; s the unique possibility, being fixed from the initial ="
hypothesis, is thatdegenerates i and the proof follows. [27]
Statement clirectly follows from the last observation. In
fact, a variation oft in the rank ofH, implies a global vari- [28]
ation in rank ofH,, of k(1 + d).
[29]
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