
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 12, DECEMBER 2002 1799

Selecting Accurate, Robust, and Minimal
Feedforward Neural Networks

Cesare Alippi, Senior Member, IEEE

Abstract—Accuracy, robustness, and minimality are fun-
damental issues in system-level design. Such properties are
generally associated with constraints limiting the feasible model
space. The paper focuses on the optimal selection of feedforward
neural networks under the accuracy, robustness, and minimality
constraints. Model selection, with respect to accuracy, can be
carried out within the theoretical framework delineated by the
final prediction error (FPE), generalization error estimate (GEN),
general predicion error (GPE) and network information criterion
(NIC) or cross-validation-based techniques. Robustness is an
appealing feature since a robust application provides a graceful
degradation in performance once affected by perturbations in
its structural parameters (e.g., associated with faults or finite
precision representations). Minimality is related to model selection
and attempts to reduce the computational load of the solution
(with also silicon area and power consumption reduction in a
digital implementation). A novel sensitivity analysis derived by the
FPE selection criterion is suggested in the paper to quantify the
relationship between performance loss and robustness; based on
the definition of weak and acute perturbations, we introduce two
criteria for estimating the robustness degree of a neural network.
Finally, by ranking the features of the obtained models we identify
the best constrained neural network.

Index Terms—Acute perturbations, constrained model selection,
feedforward neural networks, robustness, sensitivity, system-level
design.

NOMENCLATURE

Data set composed of
pairs ().

Vector of the network weights.
Optimal weights.
Weights trained on .
Neural network.
Training error function evalu-
ated on .
Generalization error.
Gradient vector. can be either

or .
Hessian matrix. can be either

or .
Vector of weights between the
hidden and the output layers.
Matrix of weights between the
input and the hidden layers.

Manuscript received July 26, 2001; revised May 6, 2002. This paper was rec-
ommended by Associate Editor X. Yu.

The author is with the Dipartmento Elettronica e Informazione, Politecnico
di Milano, 20133 Milan, Italy.

Digital Object Identifier 10.1109/TCSI.2002.805710

Effective number of parameters
of the network and its estimate,
respectively.
Perturbation vector affecting.
Variation in generalization error
induced by .

I. INTRODUCTION

ONE of the fundamental problems involved in neural-net-
work modeling is architecture optimization which aims

at high generalization performance. The fact that performance
maximization is a primary concern does not necessarily imply
that it is the unique goal to be pursued. In solving an applica-
tion, other requirements can in fact be taken into account, which
derive from specifications, constraints, or methodological is-
sues. In general, a compromise between performance (accuracy)
and constraints satisfaction must be solved to obtain the “best”
neural network for the specific application.

Examples of constraints are minimality (the smallest neural
network solving the task) [1], smoothness (regularity and
smooth behavior for the approximating neural model) [2],
robustness (a graceful loss in performance when the network is
affected by perturbations) [3], fault tolerance [4], [5], etc.

Constraints can be classified as application-oriented and im-
plementation-oriented. Within the former class we have con-
straints related to some application features, e.g., approximating
ability and smooth solution, in the latter, we address issues more
related to implementation, e.g., minimality, robustness, and fault
tolerance. The implementation can be software (SW) with code
running on a host machine or realized with a dedicated hard-
ware (HW), e.g., analog, digital, optical, or, again, mixed as it
happens in HW/SW codesign where the application is suitably
partitioned between HW and SW [6].

Time to market, rapid prototyping, and the incredible growth
of complex embedded systems [7] is pushing the microelec-
tronics computer-aided design research toward the development
of automatic synthesis tools for designing a problem solution, or
application, at a very high abstraction level. System-level design
[8] is following this philosophy by integrating application-ori-
ented and implementation-oriented constraints directly at the
application characterization level. There, the minimality and the
modularity properties of a solution are particularly appreciated
since they allow for a compact and modular model description,
which can be passed to the HW/SW codesign compiler for an
effective code partitioning and subsequent HW synthesis [6].

A topologically small network implies less neurons to be im-
plemented and, therefore, a reduced computational load (which

1057-7122/02$17.00 © 2002 IEEE

1800 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 12, DECEMBER 2002

may be particularly appealing in real-time applications). For
instance, if we consider a digital very large-scale implemen-
tation, topologically simpler network means less silicon area,
a lower power consumption (e.g., think of embedded systems
such as mobile telephones) and faster computation. Modu-
larity, carried out at the neuron level, allows treating the neuron
or an ensemble of neurons, as atomic units. Such units can
then be implemented in parallel solutions by replicating the
basic neuron macrocell, a single neuron in time multiplexed
architectures (as it happens with sequential code execution)
or as specific op-codes whose implementing HW based on
field-programmable gate arrays (FPGAs) might be reconfig-
ured on the fly during the code execution [9].

Robustness is important for a different reason. A robust net-
work provides a graceful loss in accuracy when perturbations
affect its parameters. Relevant examples of perturbations are
finite-precision representations [10]–[12], fluctuations in the
production process [13], [14], thermal and ageing effects in
analog realizations [15], static and transient faults in physical
devices. Hence, a robust network can tolerate lower accuracy
(i.e., reduced number of bits) and be resilient to a class of faults
[3].

Pursuit of robustness, modularity, and complexity require-
ments can be carried out at the application level during training
by adding a regularization/penalty term to the training cost
function so as to bias the solution toward networks possessing
desirable characteristics (e.g., weight decay for penalising
large weights [16], high curvature penalizations [2], extended
Tikhonov regularisers for improving fault tolerance [4], [17],
etc). Interestingly, a penalty term added to the training function
implicitly addresses the performance/constraints tradeoff in the
sense that the compromise is solved during training without
any external interaction.

Differently, but in the same direction, robustness with respect
to weights perturbation can be integrated during the training
phase by adding a suitable noise to the weights up-date terms.
The derived neural network becomes less sensitive to weights
perturbation with an immediate positive effect on its final analog
implementation (fluctuations in the weights production process
are an example of perturbations [13]).

A different philosophy suggests tackling the issue off-line,
after the training procedure has been completed. In this case,
constraint satisfaction is tested directly onto the obtained model
and, if possible, improved off-line. Examples in this direction
are neuron pruning [18] and unnecessary weights removal
[19]–[21] which improve accuracy, integrate smoothness
requirements and reduce the network complexity (minimality
constraint). In the same direction [22] and [23] suggest how
to properly dimension the number of hidden units of a neural
network, hence, following the minimality and modularity
directives. Another example is network augmentation [4], [24]
where a suitable replication of the network topology allows for
improving the fault tolerance ability of the neural network by
means of spatial redundancy.

In this paper, we follow the offline approach: the compromise
between accuracy and constraints satisfaction is carried out at
the end of the training phase by inspecting and ranking the ac-
curacy and the level of constraints satisfaction of the obtained

models. Model selection (with respect to accuracy) and con-
straints integration are therefore subsequent independent tasks;
the designer first optimizes a set of neural architectures and only
afterwards tests and tradeoffs accuracy and constraints to obtain
the best neural network for the application.

Note that this is the key for an easy automatic synthesis of a
neural-based application in which the nonexpert designer has to
set few—possibly none- tuning parameters.

Accuracy, the most important application-oriented con-
straint, can be estimated with a validation criterion such as
crossvalidation, k-fold crossvalidation, leave one out or, by
considering neural topologies belonging to the same neural
structure, with selection criteria such as network information
criterion (NIC) [25], general predicion error (GPE) [26],
[27], final prediction error (FPE), final prediction error biased
(FBEB) [28]. Whichever is the selected method, we obtain
a performance degree for the envisaged neural network.
Likewise, if we denote by a measure of the constraint
satisfaction for the best neural model (it can be a vector
if more then one constrain is considered) then each trained
network is characterized by a triplet (, ,).

Computational complexity and robustness are surely two
interesting high-level constraints. Computational complexity
can be simply addressed by counting the number of hidden
units or the network weights. Of course, the designer could also
consider different figures of merit based on the number of fixed
or floating point operations to be carried out. Minimality and
computational complexity are strictly dependent properties.

As far as robustness is concerned, results suggested in
the specific robustness/sensitivity literature mainly focus the
attention on HW implementation with perturbations modeling
finite precision representation errors [10]–[14], [29]. In this
direction, we surely agree that a robustness analysis dealing
with a single connection removal (see, e.g., [20]) is particularly
interesting for its subsequent impact on power consumption
and silicon area. Nevertheless, neuron reduction is even more
relevant than synapse reduction for its direct influence on the
network topology. Moreover, neuron reduction supports the
modularity concept at the neuron level.

A more general robustness analysis dealing with a large class
of perturbations affecting the neural computation must be de-
rived to provide effective robustness criteria.

In this paper, we provide a novel sensitivity analysis to es-
timate the generalization performance loss induced by generic
perturbations affecting the weights of feedforward neural net-
works of regression type. The interest for such networks
composed of a nonlinear hidden layer and a single linear
output derives from their universal function approximating
ability [30].

To our knowledge, the suggested sensitivity analysis pro-
vides in a closed form, for the first time in the related literature,
approximate relationships between training error, effective
number of degrees of freedom used by the neural network,
strength of the perturbation and variation in generalization
error.

Moreover, the suggested sensitivity/robustness analysis re-
laxes the noise-free assumption of [11] and [12], it is not
required to consider large networks as assumed in [29] nor a

ALIPPI: SELECTING ACCURATE, ROBUST AND MINIMAL FEEDFORWARD NEURAL NETWORKS 1801

large data set needed in [10] to make the mathematics more
amenable. Only a sufficiently large, but limited, data set is
required. Finally, two new robustness criteria can be derived
from the sensitivity analysis which characterize the inherent
robustness degree of the trained neural model.

The structure of the paper is as follows. Section II briefly
describes the model selection criterion from which the suggested
generalization-based sensitivity analysis is derived. Section III
introduces the concepts of weak and acute perturbations to
characterize some relevant classes of perturbations which lead,
in Section IV, to the robustness criteria. Section V briefly
introduces the parallel between robustness and fault tolerance
and identifies those perturbations not affecting the network’s
performance. Finally, the model to be chosen is the one solving
the compromise accuracy/minimality/robustness according to
a tolerable tradeoff. An example of the selection procedure
is given in Section VI.

II. M ODEL SELECTION, ACCURACY AND MINIMALITY

The neural computation implemented by the envisaged neural
family can be described as

where and denote the number of hidden units and inputs, re-
spectively. , of scalar components , represents
the weights vector between the input and the output layers and

the weights matrix between the input and the hidden ones
(, being the column weight vector con-
necting theth hidden unit of output with the input vector).
Without loss of generality we consider to be the hy-
perbolic tangent function applied to the scalar product between

and .
The column vector contains all the network weights; for

ease of notation bias terms are not considered here but can be
easily included in the analysis.

We denote by the “true” unknown neural net-
work with the optimal weights and by
a stationary i.i.d. noise of unknown variance influencing addi-
tively the true neural network so that . We start by
assuming that perturbations affecting the network weights are
small in magnitude; the hypothesis will be partly relaxed later
on.

The assumption requiring that the true function belongs to
the set of functions represented by the neural network may be
a strong hypothesis when a very limited data set is available.
On the other hand, the assumption can be accepted when the
dimension of the data set becomes larger. Such a hypothesis will
be used to develop the approximated formulas for estimating the
performance loss of the neural network subject to perturbations
in its weights and not necessarily must be considered for model
selection; more comments regarding the relationship between
the model bias and the validity of the approximated formulas
will be given at the end of the section.

Training neural model requires minimization of the
mean-square error loss function

(2.1)

evaluated over the finite set of (input, output) pairs

(2.2)

For their nature, regression-type neural networks constitute a
nested architectures family

, where represents the number of hidden units:
complex architectures degenerate in simpler ones with a suit-
able choice for weights.

To develop the sensitivity analysis based on the performance
loss, we consider the model selection procedure suggested in
[25]–[32]. To make the mathematics more amenable we do not
consider regularization terms and high-order contributions; as a
result the different theories can be grouped as follows.

Denote by an estimate of the unknown optimal parameter
vector obtained by training with an efficient algorithm
which minimizes (2.1). If we assume that inputs and noise are
unrelated random variables and by considering a quasi-Newton
Hessian (reasonable assumption according to [33] in the
neighborhood), we have from [25], [26], [28], and [34] that

(2.3)

(2.4)

where

(2.5)

In the above formulas, expectation is taken with re-
spect to all the sets obtainable with training pairs;

with
is the effective number of parameters used by the neural
network to fit the data (and it is not simply the number of the
degrees of freedom of the neural network). Despite the fact that
derivations of (2.3) and (2.4) are quite complex and outside the
goal of the paper, we can provide an intuitive interpretation
to them. De facto, represents the true validation error
of the optimal neural network while represents the
average validation error associated with all possible data sets
composed of data. Equation (2.3) states that if we have a
limited data set then the averaged generalization error is greater
than the optimal one (term). Apart from high order
contributions, the increment in generalization error is due to the
noise in the data (term) and the fact we have configured
degrees of freedom by using a limited data set of cardinality.

Instead, (2.4) addresses the relationship between the gen-
eralization error of the true neural model and its averaged
training error. Basically, it states that the averaged training
error is smaller than the validation one of the optimal model:
the training error is an optimistic estimate of the validation one.

1802 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 12, DECEMBER 2002

When we have a large training set, the correction terms vanish
and the training error becomes a good estimate of the validation
error.

By manipulating (2.3) and (2.4) we obtain that

(2.6)

A more general formulation, which takes into account a regu-
larization term, can be found in [27] where two definitions for
the effective number of degrees of freedom are given; when no
regularization terms are envisaged results coincide anyway with
(2.6). Equation (2.6) states that the averaged training error is a
too optimistic estimates for the generalization error which must
be increased of the correction term.

Directly from its definition and under the assumed hy-
potheses, we have from (2.5) that . By neglecting
the high-order terms in system (2.3) and (2.4) and substituting

with we can remove the dependency on .
We end with the final prediction error like expression [26],
[28], [32]

(2.7)

Equation (2.7) states that the averaged validation error is
larger than the averaged training error with an amplification
term depending on the number of available data and the number
of degrees of freedom used by the neural network to learn the
input/output relationship.

Unfortunately, we have only one data set and, therefore,
we cannot take the average required in (2.7); this introduces a
statistical fluctuation, function of the random variable

. Moreover, is unknown but it can
be estimated as (see also, [28]).

Finally, the generalization ability of model becomes [25],
[32]

(2.8)

Since is an unknown function in
, dependent only on the particular realization

of , it is not possible to estimate the generalization ability
of the neural network by using (2.8).

Anyway, such a term is constant along the model hierarchy
. As done in [28] we can derive a model selection criterion

by considering the biased accuracy performance degree for each
model

(2.9)

which differs of and approximations from
the true generalization value. Values given by (2.9) can be
used to select the best model, which is the one characterized
by the minimum value of the performance index (it must be
clear that does not represent a measure for the generaliza-
tion ability of the model). As we already discussed in Section I,

cross-validation based techniques can be used instead of (2.9)
as model selection criteria.

We focus again the attention on (2.8) for its relevant role in de-
riving the performance-based sensitivity analysis. We note that
the generalization ability of the trained neural network depends
on which, even if unknown, is function of

and not .
As such, when the neural network is affected by perturbations

on the term is constant, it does not con-
tribute to the variation in generalization ability and the pertur-
bation analysis of (2.8) coincides with that of (2.9).

The assumption requiring that the application to be learned
can be described by a neural network (completeness property)
is the most critical one and it has an immediate impact on the
sensitivity analysis. The hypothesis is not severe when we have
a large . In addition, the hypothesis should hold in many ap-
plications ([27] claims that that regression-type neural networks
can be regarded as quasicomplete since they are capable of ap-
proximating a large class of functions).

If the neural model is incomplete, as it might happen, then
the analysis is different. We study first the case in which the
neural network “is close to” the process generating the data (the
model is quasicomplete). The estimation error is biased so that

where is the zero-mean bias term
of variance . If we carry out the analysis leading to
(2.3) and (2.4) we obtain that the second term of (2.6) becomes

with . Therefore, if the
bias/noise “noise to signal” ratio is , i.e., the bias
contribution is small, we can neglect the term and (2.6)
is still valid.

Conversely, in the case of a strong bias, a correction term
must be added to (2.7) which is a nonlinear function of
and [28]; anyway, for a sufficiently large such term should
vanish. If we cast serious doubts about the fact the model is
complete then we should consider the GEN criterion [26] to
compute or crossvalidation-based criteria.

Anyway, also for the incomplete case, we will consider the ro-
bustness criteria derived from (2.9). This relies on the intuitive,
but unorthodox, assumption that the punctual bias term added
to the noise is equivalent to a realization of a different noise
with increased variance. In this case, the suggested robustness
criteria are only approximations but become consistent when
tends to infinity.

Whichever is the validation/selection criteria, the best model
according to accuracy is the one minimizing.

If we rank the (, ,) triplets according to the perfor-
mance index , the minimality under the modularity require-
ment can be simply considered. In fact, if is the performance
index of the best model and is the tolerable loss in accuracy,
the smallest th neural network satisfying is the
one to be selected. Such model leads to a hidden neurons
gain in topological complexity.

III. W EAK, ACUTE PERTURBATIONS AND ROBUSTNESS

The robustness of a given neural network affected by per-
turbation on its performance can be studied by means of a
sensitivity analysis applied to (2.8). Sinceis not a continuous

ALIPPI: SELECTING ACCURATE, ROBUST AND MINIMAL FEEDFORWARD NEURAL NETWORKS 1803

function of (being the rank of a matrix) we cannot simply
differentiate the (2.8). Denote by the variation in rank asso-
ciated with then

(3.1)

By expanding with Taylor around and re-
membering that the gradient is null since the training proce-
dure ended in a minimum, we obtain that

which, inserted in the above, pro-
vides

(3.2)

where is an estimate of the noise
variance (e.g., see [28]).

It is useful to express (3.2) in a canonical form which decou-
ples the dependence inand . From the quasi-Newton approx-
imation for the Hessian we have that ,
where the gradient is the -di-
mensional column vector
(components are separated by semicolons for clarity). In
particular, the first entry refers to differentiation with respect
to , the following entries to . is the first deriva-
tive of the th hidden neuron output evaluated on theth
input pattern. In the canonical form the Hessian becomes

where ,
and is the diagonal matrix

of order such that , i.e.,
ones followed by the vectors composed of components

equal to . In the canonical form contains only information
about while only information about . Note that
is a semidefinite positive matrix iff is semidefinite positive.
Finally, the canonical form for (3.2) becomes

(3.3)

Equations (3.2), and (3.3) state that the effect ofon the
variation in generalization performance is the sum of two
contributions. The first term is related to the sensitivity of the
neural network (Hessian matrix) and depends on the particular
structure of . Note that such a term is nonnegative being the
quadratic form semidefinite positive.

The second term is related to the presence of noise and its
sign depends on . A decrement in implies a reduction in
the effective number of parameters (). When and

we have that the reduction in model variance more then
compensates the increase in the training error, leading to a lower
expected validation error.

This case is interesting and can be related to the principal-
component-pruning (PCP) technique suggested in [18]. In fact,
under the assumption , the authors identified those

whose removal is associated with a .

Our analysis is different and represents an extension. Equa-
tion (3.2) estimates the variation in accuracy induced by any
kind of perturbation affecting the weights.

It is interesting to realize that if perturbations affect only,
then we can remove the small perturbation hypothesis and (3.2)
holds for any perturbation magnitude; conversely, for perturba-
tions affecting the small perturbation assumption cannot be
relaxed.

The rest of the section is devoted to investigate the effect of
on (3.2), and (3.3), by focusing the attention on those rele-

vant perturbations which do not modify.
Definition: We say that a perturbation is weak if it does

not eliminate weights.
The immediate consequence of the definition is that a weak

perturbation does not change the topological structure of the
network. If the perturbation is not weak, say strong, e.g., with
respect to , the structure of the network changes and it might
scale down the hierarchy (as it happens with the PCP technique).
The impact of strong perturbations must be taken into account
separately and their effect must be evaluated with (3.2); for in-
stance, if we remove weight then

where is the th diagonal component of
the Hessian.

Lemma 1: A continuous1 perturbation (e.g., or)
is weak, with probability one (w.p. 1).

The lemma is intuitive. In fact, strong perturbations imply
connection removal. The strong perturbation set is discrete and

contains , points, each of

which is associated with a connection removal combination; the
Lebesgue measure of such set is anyway null.

Definition (Taken From [35]): We say that the square matrix
obtained by perturbing the matrix is acute (and the asso-

ciate perturbation is said to be acute) iff
.

With we are assuming that, according to some mea-
sure (e.g., the variance of the perturbation or its magnitude), the
perturbation affecting tends to zero.

As a consequence of the definition, an acute perturbation does
not change the rank of a matrix.

The concept of acute perturbation is powerful. In fact, if
is acute then and (3.2) nicely reduces to

(3.4)

As a main consequence, an acute perturbation never
decreases the training error and does not improve the gener-
alization ability of the neural network. This follows from the
fact that under the small perturbation hypothesis there it exists
a neighborhood of so that and that

is semidefinite positive.
The next theorem provides conditions under which perturba-

tions affecting separately and are acute. In the following,
we assume that there are not always saturated hidden units in
the sense that their output is constant for each input pattern. If
this is not the case we have first to reconfigure the network by
removing the saturated neurons and add to the bias of

1We say that a perturbation is continuous ifPr(�� = � ��) = 0; 8� ��

1804 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 12, DECEMBER 2002

the output neuron (and are the weights and the outputs
of the removed neurons, respectively).

We also envisage application of a principal component anal-
ysis (PCA) technique [30] to have linearly independent inputs.

Theorem:

a) If is a weak continuous perturbation, thenis acute
w.p. 1.

b) The continuous perturbation is acute w.p. 1 iff the
induced is acute.

c) If , then .

See the appendix for the proof.
Corollary 1: A continuous perturbation is acute w.p. 1

iff is acute.
The corollary directly follows from the theorem. In fact, if we

consider and the canonical form for
the Hessian we have that perturbations affectingare indepen-
dent from those affecting . The proof follows from statement
a) since the acute perturbation does not change the rank of
the Hessian w.p. 1 and from b) since the rank may change iff

is acute.
Corollary 2: A generic continuous perturbation is acute

w.p. 1 if is full, otherwise, the perturbation is not
acute w.p. 1.

The consequences coming from the theorem and subsequent
corollaries are important. In fact, the theorem states that all per-
turbations are acute w.p. 1 under the assumption that hidden
units are linearly independent. As a main consequence, the (3.4)
holds. Conversely, if has not full rank, a generic continuous
perturbation will increase the rank w.p. 1. This is intuitive if
we think that a continuous perturbation will make the rank
of full w.p. 1.

The rank degeneration arises only with subtle perturbations
and which introduce a linear relationship among hidden

units; such perturbations are strong since they modify the struc-
ture of the network but the probability of extracting them for a
continuous perturbation is again null.

Note that we are not limiting the analysis to static perturba-
tions, e.g., time-invariant perturbations since we can apply the
method also to dynamic perturbations. In such a case, the error
on the network output vanishes if the perturbation is transient.

This observation is of some relevance in a physical imple-
mentation where transient faults might affect the weights, as it
happens with analog implementations (e.g., see [13] for a so-
lution to this problem). Such faults are extremely difficult to
be identified for their spurious behavior. If we select a robust
neural network, their effect on the generalization error will be
attenuated.

We note that perturbations affecting inputs and internal com-
putation for hidden units are equivalent to static/transient pertur-
bations affecting the hidden units output. Point b) of the the-
orem allows us to extend the validity of the analysis to a wider
set of perturbations affecting the neural computation.

To this end we provide a lemma granting that a perturbation
(which therefore covers all perturbations affecting the com-

putation in the input/hidden layer) is acute.
Lemma 2: Denote by the smallest nonnull eigen-

value of . Perturbation is acute if

and the perturbation matrix (associated with
perturbations or) are symmetric matrices by
construction. We invoke the Weyl’s theorem [35], [36]
which states that for each eigenvalue the relationships

holds.
As a consequence, by reminding that , we can
write that . The
rank degenerates if at least one goes to zero which
would imply . Since the relationship must
hold for any eigenvalue of , rank degeneration cannot occur
if we require that .

In a way, the lemma is strictly related to PCA and other
techniques connected with hidden unit removal [21], [30]. In
a principal-axis representation, where each eigenvalue is on
its coordinate axis, the perturbation does not annihilate the
weaker dimension of the space if the spectral radius of the
perturbation has not enough “energy.”

If we consider a digital realization in which the perturbation is
associated with quantization (e.g., rounding or truncation [10],
[11]) of the weights, it is reasonable to assume that quantiza-
tion does not remove any weight and, hence, quantization is an
acute perturbation. Also, in analog implementations where com-
ponents (e.g., resistors or capacitors) are affected by the produc-
tion process we have that the associate perturbations are acute
[they are not acute only if the element breaks; in such a case we
have to consider (3.2)].

In the following section we will always consider acute per-
turbations consequent to a proper hidden layer dimensioning;
therefore, we can assume that the rank ofis full.

IV. ROBUSTNESSCRITERIA FOR FEEDFORWARDNEURAL

NETWORKS

In the section, we introduce two criteria for evaluating the
robustness degree of a feedforward neural network. The first
criterion addresses the worst case perturbation (WCP), namely
it quantifies the maximum loss in accuracy associated with a
generic acute perturbation. On the basis of the magnitude of
the maximum error we decide whether tolerating or not a class
of perturbations which might affect the neural network during
its operational life. Another interesting case is the mean case
perturbation (MCP), which quantifies the average increase in
generalization error associated with acute perturbations.

Lemma 3: Given an acute perturbation then
. The equality holds

when is a vector parallel to the eigenvector associated with
.

Since (3.4) is a semidefinite positive quadratic form, the lower
bound in accuracy is 0. Conversely, the maximum loss in accu-
racy arises when the perturbation vector is parallel to the
eigenvector associated with the maximum eigenvalue

of [37].
As such, Lemma 3 states that the worst perturbation is

and quantifies its impact on . Now, if a trained
neural network exactly contains a smaller trained neural net-
work then, by the inclusion principle [36], the larger networks
have a larger than the one associated with the smaller net-
work: such larger models worsen the WCP.

ALIPPI: SELECTING ACCURATE, ROBUST AND MINIMAL FEEDFORWARD NEURAL NETWORKS 1805

Lemma 4 addresses the MCP issue by evaluating the average
loss in accuracy induced by a class of perturbations.

Lemma 4: Let be an acute perturbation withi.i.d. com-
ponents of variance , then

The proof follows by taking expectation in (3.4) with respect
to the domain

The first manipulation follows from [37] and [38] while
the second is associated with the fact that expectation and
trace operators are linear and that expectation is taken over
the dominion (which is independent from).

The lemma covers the interesting case of perturbations as-
sociated with quantization of the network weights. In such a
case, the small perturbation hypothesis holds and the noise vari-
ance associated with the least significant bits truncation is

[11]. Therefore, lemma 4 can be used to dimension the
word-length for coefficients by considering as figure of merit
and not the function output as suggested in [10] and [29]. Given
a tolerable loss in performance and an application we can obtain
the satisfying the loss accuracy requirement.

In an analog implementation, if the tolerance of a component
due to the production process assumed to be ruled by a Gaussian
distribution is , then the standard deviation of the Gaussian
is 3 and . Given a tolerable loss in performance,
according to Lemma 4 we identify the acceptableand, hence,
we characterize the parameter production process.

Two criteria for measuring the robustness of a neural network
derive directly from lemmas 3 and 4. The first criterion provides
a robustness degree on the basis of the WCP, the second by con-
sidering the average case MCP

(4.1)

(4.2)

Note that the criteria do not take into account the magnitude
of the perturbation since we are interested in a measure of the
robustness degree for the neural network.

We can weaken some hypotheses or obtain finer relationships
in Lemmas 3 and 4 by specialising the perturbations to some rel-
evant cases affecting weightsand and, therefore, the com-
putation locally at the neuron level.

As a direct consequence of Lemma 4 we have that ani.i.d.
perturbation with variance affecting is acute w.p. 1 and

.

The expression shows an interesting relationship between the
information provided by the data and the number of hidden units
(the sum is now extended up to index, i.e., the number of
hidden units). Such a relationship becomes much more explicit
when we consider a uniform distribution for activation values or
inputs as we do in the following examples. In that case, we can
show that the average perturbation increases linearly with the
number of hidden units and, therefore, larger neural networks
are less robust.

Example 1: Uniform Distribution for Neuron Activa-
tions: We assume that the activation value of a generic
hidden neuron is uniformly distributed within the symmetric
interval of extreme , that the activation function is the hy-
perbolic tangent and that hidden units are linearly
independent. It is simple to prove, by integrating with the
variable substitution and then by parts, that

(4.3)

which represents the variance of the neuron output. The evolu-
tion of the function with respect to is given in Fig. 1. If the
interval extreme is above , then the variance of the output
is above 0.8.

The eigenvalues sum is the trace of the Hessianassociated
with the hidden units namely

(4.4)

If each unit is always activated with a sufficiently largethen
the trace grows at most linearly with the number of hidden units.
For we can write that

(4.5)

When increases the maximum eigenvalue of the Hessian is
upperly bounded by a linear growth.

Example 2: Uniform Distribution for Inputs:As a second
example we consider a regression-type neural network mapping
a function. Inputs are uniformly extracted
from the [] interval (e.g.,). If the generic neuron
has a vector where is the weight connecting the
input and the neuron bias, we obtain that

(4.6)

where . If we assume inputs normal-
ized in the [1, 1] interval, then

(4.7)

. Again, if s are sufficiently
large then, as in example 1, the asymptotic behavior of
and shows a linear behavior.

The adherence of such expressions with theoretical results
holds even with low s.

To show this, a set of experiments has been carried out on a
teacher neural network with four hidden units; data have been

1806 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 12, DECEMBER 2002

Fig. 1. TheE[X] function.

Fig. 2. The evolution of� (Lmax) and � (Sum_eig) w.r.t. increasing
N .

extracted from a uniform distribution and a white Gaussian
noise WGN(0,0.01) has been added to the network output.

We considered different training sets with increasing cardi-
nality , 50, 200, and 500. For each data set, training
was performed until the gradient vector was null. Fig. 2 shows
the evolution over different hidden units of the maximum eigen-
value and the sum of eigenvalues (trace of). Apart from fluc-
tuations we can appreciate the linear behavior of and that
of the eigenvalues sum.

V. APPLICATION-LEVEL FAULT TOLERANCE

We say that a digital circuit is fault tolerant if the occurrence
of errors (e.g., induced by defects or transient signals) is masked
at the device output.

We can extend the definition to address non digital
computation.

Definition: We say that a neural network is fault tolerant with
respect to a class of perturbationsif their effect on the chosen
figure of merit is null.

The fault-tolerance requirement can be weakened if we say
that the increase in error onis below a predefined threshold.
This aspect has been nicely addressed in [4] where the authors
do prefer to speak about small perturbation fault tolerance rather
than stuck-at faults; as a consequence they implicitly consider
the robustness features of the neural network as studied in pre-
vious sections.

Lemma 5: An acute perturbation does not introduce a
generalization loss iff belongs to the null space or,
equivalently, belongs to the null space . A generic
continuous perturbation introduces a generalization loss w.p. 1.

Proof: Since the perturbation is acute we have

The proof follows immediately since the presence of the per-
turbation directly affects the generalization error. On the other
hand, if the perturbation is not acute, its effect on the general-
ization performance is not visible only when . This only
happens if the perturbation spans the null space generated by

. The probability of generating a continuous perturba-
tion belonging to a subspace, is anyway null.

We could think that by increasing the number of hidden units
we introduce some sort of redundancy and, therefore, the net-
work becomes more fault tolerant with respect to perturbations.
Note that the attention is on fault-tolerance, not on robustness.

Lemma 6: No improvement arises by increasing the number
of hidden units with w.p. 1.

In fact, by increasing the number of hidden units we may only
increase the dimension of the null space; nevertheless, the prob-
ability of not observing the effect of a continuous perturbation
is still zero. Again, this assertion is not in contrast with [4] for
the different theoretical setup and the assumed fault mode.

VI. SYSTEM-LEVEL NEURAL DESIGN: AN EXAMPLE

The experimental section shows an example for selecting a
model within in a constrained environment.

The application refers to the development of an embedded
neural device for classifying numerical digits (from 0 to 9); the
MNIST database has been considered for training and valida-
tion. As such, a digit is represented by a 2828-pixels matrix
in a 8-b grayscale coding. The size of the network, and hence,
its complexity, is relevant since there are 784 input neurons. The
training set was composed of training samples ran-
domly extracted from the database while a set of 1000 patterns
has been considered for validation purposes.

A. Model Selection in a Constrained Environment

We consider a target digital architecture in which a neuron
is the atomic unit implemented by means of a digital macrocell
of fixed structure stored in an appropriate library (the modu-
larity at the neuron level constraint follows). Let us image that
a high-level estimate of the power consumption for the neuron
macrocell limits the complexity of the neural network which
must not exceed hidden units. The macrocell is param-
eterised in the number of bits necessary to represent weights;
this indirectly controls the silicon area usage (saving bits im-
plies saving full adders in a digital implementation). A good
robustness degree is therefore highly appreciated since it allows
for minimizing the inner size of the neuron. Therefore, from
high-level specifications, the main features for the application
are accuracy, modularity and robustness.

Different models, with hidden units ranging from 5 to 17
have been trained with a Levenberg–Marquardt algorithm on the
training data. To test the impact of different training set of cardi-
nality we considered 30 s so as to estimate the statistical
behavior of the relevant quantities involved in the analysis. In
the following plots we indicate with a circle the average value of
the envisioned quantity and with a continuous interval its fluc-
tuation over s (the length of the whole interval is a standard
deviation).

ALIPPI: SELECTING ACCURATE, ROBUST AND MINIMAL FEEDFORWARD NEURAL NETWORKS 1807

Fig. 3. Evolution ofp̂.

Fig. 4. Evolution of the validation error.

Fig. 3 shows the evolution of for each trained model of the
hierarchy. Note that the effective number of degrees of freedom
significantly differs from the number of degrees of freedom of
the network (for model is around 580 against 11 760
weights available).

Since different figures of merit can be considered for model
selection we consider in this experiment both FPE [as defined in
(2.7)] and crossvalidation (of course, FPE applies solely to the
training set while cross validation to the validation one).

The evolution of FPE and the validation performance esti-
mated according to crossvalidation are given in Figs. 4 and 5,
respectively.

In the following, we consider the average behavior of the
quantities for discussion.

It is interesting to point out that the behavior of the two model
selection curves is similar and that FPE underestimates the val-
idation error. This effect has been pointed out in [27] and it is
due to the neglected high order terms in obtaining (2.6); how-
ever, we remind that the bias discrepancy does not affect the
selection criterion.

By considering FPE, the model to be selected according to
accuracy are the ones with 13,14,15,16, and 17 hidden
units. Instead, if we consider crossvalidation, we should select

Fig. 5. Evolution of FPE.

Fig. 6. Evolution ofR .

models with 16, 17, and, to some extent, 14. For such
models, the difference in accuracy is almost negligible and we
can consider them to be practically equivalent according to
the tolerable loss ; other requirements can now be integrated
to characterize the final model. The minimality criterion is
immediate and would suggest to consider the hidden
units network according to FPE and the one from
cross validation. If other constraints, e.g., robustness, must
be integrated then we have to consider all the performance
equivalent models and tradeoff minimality versus robustness.

and criteria of (4.1) and (4.2) have been there-
fore computed and plotted in Figs. 6 and 7, respectively. The
criteria show that in this application we do not improve the
robustness indexes by increasing the number of hidden units.

We have that all networks in the 13–17 range are practically
equivalent according to while is the most robust
model according to index . We can integrate minimality,
accuracy and robustness requirements: if minimality is more rel-
evant than robustness and accuracy then the best model to be
selected for the application is , otherwise. We select

for subsequent analysis.

1808 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 12, DECEMBER 2002

Fig. 7. Evolution ofR .

B. Estimating the Accuracy of the Suggested Theory

In this last section, we wish to study the effective impact of
perturbations on , verify the goodness of the suggested per-
formance loss formula (3.4) and the test the impact of the small
perturbation hypothesis on the sensitivity analysis.

The experiments have been carried out by considering a set of
50 perturbations uniformly extracted from the []
interval for and affecting the network weights (by
inspecting the network weights only one bit is necessary to
represent their integer part in a fixed point notation). The chosen
parameterized perturbation interval models generic bounded
perturbations randomly affecting the weights.

If we have in mind a digital implementation thencan be
immediately related to the truncation and rounding operators.
In fact, in the truncation case, it implies that we remove all bits
whose positional weight is below 2. In analog implementa-
tions we simply assume that weights are affected by generic per-
turbations limited to such interval. Of course, a Gaussian model
can be adopted but does not change the validity of the method.

Finally, to represent the network weights in a two’s comple-
ment notation we need bits; the number of bits presented
in the following figures must then be intended as such.

In the first experiment we study the impact of per-
turbations affecting the weights of the network perfor-
mance; in particular, the performance loss is estimated
with crossvalidation . More in detail, we refer to
model and we consider as performance loss index

. The evolu-
tion of with respect to the number of bits is given in Fig. 8; the
notation in the plot is the same used in the previous subsection.
We realize that we need at least 8 b to grant a performance loss
below 3%.

The second experiment aims at verifying the accuracy of the
suggested approximated formulas by investigating the accuracy
of (3.4).

In particular, we have to estimate the discrepancy between the
variation in generalization error as estimated by (3.4) and the
effective variation in accuracy estimated with crossvalidation

. The analysis still applies

Fig. 8. Statistical behavior of# w.r.t the bits number.

Fig. 9. Statistical behavior of# w.r.t the bits number.

to model . A more correct index to validate the theory and
identify the effectiveness of (3.4) in estimating the performance
loss is

The statistical evolution of with respect to the number of
equivalent bits is given in Fig. 9.

We appreciate the fact that the estimate is quite good and, as
such, robustness analysis derived from (3.4) is reliable.

As we could have expected, when the perturbation interval
becomes too large (small bits), the error increases rapidly since
weights are strongly perturbed. In such a case the small pertur-
bation hypothesis does not hold any more and the estimate pro-
vide by (3.4) diverge from the “true” one. We surely have that
the theory provides a good estimate for the performance loss
with a number of bits larger than 7. Finally, in this application,
by integrating results coming from Figs. 8 and 9 the optimal rep-
resentation of weights is on 8 b.

ALIPPI: SELECTING ACCURATE, ROBUST AND MINIMAL FEEDFORWARD NEURAL NETWORKS 1809

VII. CONCLUSION

The paper addresses the system level design of feedforward
neural networks in a constrained environment. Constraints
address the topological complexity of the network, accuracy
and robustness issues. neural-network selection is based on
a relative accuracy performance based on a finite data set
framework. We show that the minimality requirement naturally
derives from the accuracy figure of merit. Two criteria are
suggested to measure the robustness degree of a neural network
once affected by perturbation in its weights. By solving the
tradeoff between accuracy and requirements satisfaction we
can finally identify the optimal neural network.

APPENDIX

The theorem is proved in three steps.
Statement a). A perturbation can only affect the ma-

trix of the canonical form. If is weak, then the perturbed
matrix will keep being non singular since

no weights will be removed. The proof follows from the Inertia
theorem [15] which states that the inertia, i.e., respectively, the
numbers of negative, null, and positive eigenvalues of matrix
equalise the inertia of matrix iff matrix is nonsin-
gular. When we apply the inertia theorem to our problem, we
have that iff is nonsin-
gular (e.g., we do not introduce null eigenvalues) for the diag-
onal structure of .

Statement b). From the Inertia theorem we have that
. We can express

as , where
and have that .

If degenerates in rank, so it does and the first part of
the proof follows. In fact, if there it exists a linear combination
among the hidden units’ outputs then there is also in the rows of

from the structure of . In fact, since
the activation function is the hyperbolic one we have that that
the gradient can be directly expressed as function
of the neuron output. If the hidden units are linearly dependent
the rank of degenerates. Note that the same property holds if
the activation function is the sigmoidal one.

We have to prove that the opposite holds, i.e., that if the rank
of degenerates then so does and there are linear combi-
nations among hidden units.

Again, by inspecting the structure of the , under the hy-
pothesis that inputs are independent and that hidden units do not
saturate, we have independent relationships. If
degenerates, say toit means that some of the re-
lationships degenerated so that . From the structure
of the the unique possibility, being fixed from the initial
hypothesis, is thatdegenerates in and the proof follows.

Statement c)directly follows from the last observation. In
fact, a variation of in the rank of implies a global vari-
ation in rank of of .

ACKNOWLEDGMENT

The author wishes to thank the reviewers whose insights and
hints significantly helped to improve the manuscript.

REFERENCES

[1] Special Issue on Neural Networks, IEEE Trans. Circuits Syst., vol. 36,
pp. 643–772, May 1989.

[2] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural
networks architectures,”Neural Comput., vol. 7, no. 2, pp. 219–269,
1995.

[3] C. Alippi, “Randomized algorithms: A system-level, poly-time analysis
of robust computation,”IEEE Trans. Comput., vol. 51, pp. 740–749, July
2002.

[4] P. J. Edwards and A. F. Murray, “Toward optimally distributed compu-
tation,” Neural Comput., vol. 10, pp. 987–1005, 1998.

[5] Y. Tohma and Y. Koyanagi, “Fault-tolerant design of neural networks
for solving optimization problems,”IEEE Trans. Comput., vol. 45, pp.
1450–1455, Dec. 1996.

[6] G. De Micheli and M. Sami,Hardware/Software Co-Design, G. De
Micheli and M. Sami, Eds. Norwell, MA: Kluwer , 1996, vol. 310.

[7] D. Sciuto, “Guest editor’s introduction: Design tools for embedded sys-
tems,”IEEE Des. Test Comput., vol. 17, pp. 11–13, 2000.

[8] Proceeings of the IEEE Annual Workshop on VLSI: System Level Design,
vol. 1, 1998, pp. 1–144.

[9] R.R. Vemuri and R.E. Harr, “Configurable computing:Technology and
applications,”IEEE Computer, vol. 33, Apr. 2000.

[10] C. Alippi and L. Briozzo, “Accuracy vs. precision in digital VLSI ar-
chitectures for signal processing,”IEEE Trans. Comput., vol. 47, pp.
472–477, Apr. 1998.

[11] J. Holt and J. Hwang, “Finite precision error analysis of neural net-
work hardware implementations,”IEEE Trans. Comput., vol. 42, pp.
281–290, Mar. 1993.

[12] G. Dundar and K. Rose, “The effects of quantization on multilayer neural
networks,”IEEE Trans. Neural Networks, vol. 6, pp. 1446–1451, Nov.
1995.

[13] P. J. Edwards and A. F. Murray, “Fault tolerance via weight noise
in analog VLSI implementations of MLP’s—A case study with
EPSILON,” IEEE Trans. Circuits Syst. II, vol. 45, pp. 1255–1262, Sept.
1998.

[14] I. Bayraktaroglu, A. S. Ogrenci, G. Dundar, S. Balkir, and E. Alpoydin,
“ANNSyS (An analog neural network synthesis system),” inProc. IEEE
ICNN’97, 1997, pp. 910–915.

[15] M. J. Buckingham, Noise in Electronic Devices and Sys-
tems. Chichester, U.K.: Ellis Horwood, 1983.

[16] A. Krogh and J. A. Hertz, “A simple weight decay can improve gener-
alization,” inProc. 4th NIPS, vol. 4, 1992, pp. 950–957.

[17] G. Seber and C. Wild,Nonlinear Regression. New York: Wiley, 1989.
[18] A. U. Levin, T. K. Leen, and J. E. Moody, “Fast pruning using principal

components,” inProc. 6th NIPS, vol. 6, Dec. 1994, pp. 35–42.
[19] Y. Le Cun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in

Proc. 2nd NIPS, vol. 2, CA, Feb. 1990, pp. 598–605.
[20] B. Hassibi and D. G. Stork, “Second-order derivative for network

pruning: Optimal brain surgeon,” inProc. 5th NIPS, vol. 2, Jan. 1993,
pp. 164–173.

[21] I. Guyon, V. Vapnik, B. Boser, L. Bottou, and S. Solla, “Structural risk
minimization for character recognition,” inProc. 4th NIPS, vol. 4, 1992,
pp. 471–479.

[22] C. Alippi and V. Piuri, “Topological minimization of multi-layered
feed-forward neural networks by spectral decomposition,” inProc.
IEEE IJCNN’92, Beijing, China, Nov. 3–6, 1992, pp. 805–810.

[23] A. S. Weigend and D. E. Rumelhart, “The effective dimension of the
space of hidden units,” inProc. IEEE IJCNN, Singapore, 1991, pp.
2069–2074.

[24] D. Phatak and I. Koren, “Complete and partial fault tolerance of feedfor-
ward neural nets,”IEEE Trans. Neural Networks, vol. 6, pp. 446–456,
Mar. 1995.

[25] N. Murata, S. Yoshizawa, and S. Amari, “Network information crite-
rion—Determining the number of hidden units for an artificial neural
network model,”IEEE Trans. Neural Networks, vol. 5, pp. 865–872,
Nov. 1994.

[26] J. Larsen, “A generalization error estimate for nonlinear systems,” in
Proc. IEEE Signal Processing Workshop, 1992, pp. 29–38.

[27] J. Larsen and L. K. Hansen, “Generalization performance of regularized
neural network models,” inProc. IEEE Signal Processing Workshop,
1994, pp. 42–51.

[28] C. Alippi, “FPE-based criteria to dimension feedforward neural topolo-
gies,” IEEE Trans. Circuits Syst. I, vol. 46, pp. 962–973, Aug. 1999.

[29] S. Piché, “The selection of weights accuracies for madalines,”IEEE
Trans. Neural Netw., vol. 6, pp. 432–445, Mar. 1995.

[30] M. H. Hassoun, Fundamentals of Artificial Neural
Networks. Cambridge, MA: MIT press, 1995.

[31] J. E. Moody, “The effective number of parameters: An analysis of gen-
eralization in nonlinear learning systems,” inProc. 4th NIPS, 1992, pp.
847–854.

1810 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 12, DECEMBER 2002

[32] S. Amari, “Statistical and information-geometrical aspects of neural
learning,” in Computational Intelligence: A Dynamic Perspec-
tive. New York: IEEE Press, 1995, pp. 71–82.

[33] C. M. Bishop, Neural Networks for Pattern Recognition. London,
U.K.: Clarendon , 1995.

[34] A. Poncet, “Asymptotic probability density of the generalization error,”
in Proc. IEEE NICROSP, 1996, pp. 66–74.

[35] G. W. Stewart and J. Sun,Matrix Perturbation Theory. New York:
Academic, 1990.

[36] R. A. Horn and C. R. Johnson,Matrix Analysis. Cambridge, MA:
Cambridge Univ. Press, 1985.

[37] G. Strang,Linear Algebra and Its Applications. Orlando, FL: Harcourt
Brace Jovanovich, 1988.

[38] L. Ljung, System Identification, Theory for the User. Englewood
Cliffs, NJ: Prentice-Hall, 1987.

Cesare Alippi (S’92–M’97–SM’99) obtained the
Dr. Ing. degree in electronic engineeringsumma cum
laude in 1990, and the Ph.D. degree in computer
engineering in 1995, both from Politecnico di
Milano, Milan, Italy.

He was a Researcher in computer sciences at the
University College London, London, U.K., and the
Massachussets Institute of Technology, Cambridge.
Currently, he is an Associate Professor in Informa-
tion Processing Systems at the Politecnico di Milano.
His interests include neural networks (learning the-

ories, implementation issues and applications), composite systems, and high-
level analysis and design methodologies for embedded systems. His research
results have been published in more that 80 technical papers in international
journals and conference proceedings.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

