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Randomized Algorithms:
A System-Level, Poly-Time Analysis
of Robust Computation
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Abstract—This paper provides a methodology for analyzing the performance degradation of a computation once affected by
perturbations. The suggested methodology, by relaxing all assumptions made in the related literature, provides design guidelines for
the subsequent implementation of complex computations in physical devices. Implementation issues, such as finite precision
representation, fluctuations of the production parameters, and aging effects, can be studied directly at system level, independently
from any technological aspect and quantization technique. Only the behavioral description of the computational flow, which is assumed
to be Lebesgue measurable and the architecture to be investigated are needed. The suggested analysis is based on the recent theory
of Randomized Algorithms, which transforms the computationally intractable problem of robustness investigation in a poly-time

algorithm by resorting to probability.

Index Terms—Embedded system design, finite precision error analysis, randomized algorithms, sensitivity analysis, system level

design.

1 INTRODUCTION

Esay that an application is robust when the impact of

bounded perturbations on the associated computa-
tion provides a graceful degradation in performance with
respect to a given figure of merit [1], [2], [3], [4], [5]. Testing
the robustness of an application at system level before any
implementation/physical aspect is taken into account goes
in the direction of a safe and reliable design for embedded
systems foreseen in [6]. There, one of the envisioned design
challenges is in the introduction of reliability at low cost,
obtained without brute force redundancy (e.g., replicated
HW, such as triple modular redundancy): Software and
hardware must anticipate/soften electronic and nonelec-
tronic failure modes to at least “fail safe,” in the sense that a
smooth performance loss is expected.

By following this philosophy, we address the robustness
analysis issue in a wide sense: Perturbations can affect the
computation as discrete events, e.g., as it happens in the
stuck-at model or as continuous variables; hence, resem-
bling the soft perturbations of analog devices. De facto,
perturbations abstract physical sources of uncertainty
affecting the computation.

A robustness analysis approach at system level can be
therefore envisaged to estimate, before a specific physical
perturbation takes place, the structural loss in performance
of the application. This allows the designer to decide
whether validating the candidate architectural choice or not
and identify the most critical points of the computational
flow at the very high level of the design cycle.
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In general, the technical literature addresses the robust-
ness analysis problem by considering a specific function to
be implemented on a given architecture and well-defined
perturbations.

Based on this set-up, deterministic approaches hide the
probabilistic structure of the perturbation on the computa-
tion by considering a worst case scenario [5]. Quite often,
the obtained information is weak and useless since it
derives from bounding the error propagation along the
computation.

Probabilistic approaches are somehow more effective
and study the influence of perturbations on the computa-
tion by evaluating the generation and the propagation of
perturbations through the computational flow [7], [8], [9].
To make the mathematics more amenable, such papers limit
the analysis to a specific computation (e.g., linear functions
[7], neural networks [9], [10], [11], [12], Discrete Cosine
Transform [13], and Fast Fourier Transform [14]), consider
well-defined perturbations (mostly associated with quanti-
zation techniques), assume the function to be regular (e.g., it
is required continuity and differentiability) and the small
perturbation hypothesis [7], [8], [10], [11].

The small perturbation hypothesis allows the function
associated with the computation to be linearized with a
Taylor expansion and supports the error propagation rule;
the analysis is acceptable only if the function is linear or the
feasible perturbations are small enough to grant the validity
of the expansion.

Unfortunately, regularity assumptions and the small
perturbation hypothesis significantly limit the applicability
of the methodology to the large class of strongly nonlinear
functions and/or severe perturbations, respectively.

In addition, almost all papers focus the attention on the
implementation of a specific function; specificity prevents,
most of the time, the extension of the methodology to other
classes of functions.
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Different from the current literature, this paper provides
a general methodology for analyzing and quantifying the
robustness of a computation for a large class of functions
directly at a system level. A system level robustness
analysis also allows the designer to study the impact of
any perturbation of any nature influencing the behavioral
computation and quantify its effect on the computation
output.

Finite precision representations (e.g., fixed/floating
point representations, truncation, and rounding), fluctua-
tions in the production process, transient and permanent
faults affecting the computation are relevant examples of
perturbations: All these implementation-related sources of
uncertainties are abstracted by behavioral perturbations. A
system level analysis based on the concept of behavioral
perturbations hence groups all these complex fully inter-
acting aspects within an effective and homogeneous
methodological framework.

The suggested methodology allows removing all the
hypotheses addressed in the related literature. In particular,

e The methodology is no more specific to a given
application but general and applicable to the wide
class of Lebesgue-measurable functions (basically,
every mathematical computation related to the
engineering field is Lebesgue-measurable),

e Results are independent from any technological and
implementation issue,

e The small perturbation assumption is no more
required,

e No assumptions are made on perturbations and on
their placement within the computation, and

e The continuity/differentiability hypotheses for the
function to be implemented are relaxed.

The analysis is therefore extremely general. Of course,
generality makes it almost impossible to solve the robust-
ness problem in a closed form for a generic function. In
addition, since it is required testing the whole application
for robustness we have to explore all the continuous
perturbation space (so as to cover all the unknown physical
perturbations that might, in the future, influence the
computation).

It is evident that this problem is intractable from the
computational point of view. In fact, even if we should only
consider a uniform grid on the k-dimensional perturbation
space (k represents the generally large number of points we
wish to test for robustness), say g points for each dimension,
we should consider ¢* points for robustness. This sampling
algorithm scales badly with g (the resolution in the grid)
and k (the dimension of the perturbation space); this effect is
known as the “curse of dimensionality” [15], a complexity
theoretic barrier.

The key point for solving the robustness problem in all
its aspects is the introduction of the recent theory based on
Randomized Algorithms [16], [17], [18]. Randomized algo-
rithms derive from the learning theories [19], [20] and are
strictly related to the Montecarlo method; they turn, under
weak hypothesis, an intractable problem into a tractable
one, which can be tackled with a polynomial complexity.
The price we have to pay is that results are valid in
probability with accuracy and confidence levels that can be
made arbitrarily close to zero and 100 percent, respectively.

Wide evidence for the effectiveness of such approaches
can be found in the control theory community where great
efforts have been devoted to the analysis and design of
robust controllers [17], [18], [21], [22], [23], [24] and,
indirectly, in the extreme relevance and widespread use
of their father, the Montecarlo method.

The structure of the paper is as follows: Section 2
formulates in more detail the problem at a behavioral level
and relates behavioral entities with physical ones. Section 3
introduces the concept of robust computation and char-
acterizes the robustness analysis by relating the loss in
performance with behavioral perturbations. Section 4, after
a brief introduction of the theory behind Randomized
Algorithms, applies them to estimate, with a poly-time
algorithm, the robustness degree of the computation.
Experiments are given in Section 5, where Randomized
Algorithms have been used to test the robustness of a time
multiplexed digital multiply-add-accumulate solution for
computing the scalar product. The simplicity of the chosen
architecture is only apparent, since truncation operators
associated with a digital implementation transforms the
function in a highly nonlinear one.

2 BEHAVIORAL AND PHYSICAL COMPUTATIONS

The section introduces the concepts of behavioral computa-
tion, behavioral architecture, and behavioral perturbations
as abstractions of their physical counterparts. Behavioral
entities constitute the system level framework onto which
the subsequent robustness analysis is developed. More in
detail, at the system level, we need

e a behavioral description of the computational flow
associated with the application,

e a target Reference Behavioral Architecture (RBA)
executing the behavioral computation, and

e a set of behavioral perturbations modeling un-
controllable uncertainties associated with the appli-
cation and affecting the RBA.

A behavioral description for the computation requires
the characterization, at behavioral level, of all the operators
involved in the computation and their features by means of
an appropriate description language. A behavioral archi-
tecture is an abstract architecture executing the behavioral
computation and, hence, it is characterized by the way the
computation is carried out. The behavioral architecture
abstracts a physical architecture; its structure is suggested
by the designer or provided by automatic design tools.

Once a specific architecture has been selected among a
set S of equivalent solutions supporting the execution of the
computation, it becomes the target RBA.

As a simple example, we consider the behavioral
computation associated with the linear function y=
a1z + apws with real and scalar operands. The behavioral
computation is characterized by the addition and multi-
plication operators; the description is completed by label-
ling operands as real, scalar, and bounded.

From the behavioral computation we deduce the set S of
equivalent behavioral architectures supporting the execu-
tion of the behavioral computation. As we mentioned S is
composed of all feasible architectures able to support the
scalar product execution. The potentially large cardinality
of S is reduced by the designer who prunes, manually or
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Al: A2:
S, =0,X;8, =0,%,; y=0;
Y=5+5,; for(i=li<=2i++)y=y+a;x;

Fig. 1. Two behavioral architectures associated with the y = a;z1 + asz
function.

with the support of automatic tools, the architecture space.
For instance, in a digital realization, pruning is based on the
available macrocell libraries and on rough estimates for
silicon area and power consumption.

In this example, we identify within S the two relevant
behavioral architectures A1 and A2 described by the C-like
code in Fig. 1.

Note that Al resembles a parallel implementation in
which each abstract operator is mapped one-to-one to a
physical operator. Conversely, A2 refers to a multiply-
add-accumulate time multiplexed architecture. If the
designer—or some automated procedure—selects A2 to
be the candidate architecture for solving the application,
and hence to be studied for robustness, then A2 becomes
the RBA.

The third element to be defined is the behavioral
perturbation, an abstraction for uncertainties affecting the
computation in all its aspects. Such perturbations can be
classified according to their nature in application-dependent
perturbations and architecture-dependent perturbations:

e Application-dependent perturbations address all
uncertainties affecting the application itself. Basi-
cally, in this class we have noise associated with
measured quantities [25] and fluctuations affecting
somehow the application parameters [26], [27], [28].
Once such source of uncertainty has been character-
ized, e.g., by associating a probabilistic description
to perturbations, we have fully described the
behavioral computational flow. Application-depen-
dent perturbations are uncontrollable, intrinsic with
the application but independent from any architec-
tural or implementation issue. Knowledge about the
nature of application-dependent perturbations can
be exploited by automatic design tools to restrict the
design search space, e.g., by dimensioning some
components [7] as it happens in those applications
whose parameters have been identified (linear
models [27], neural networks [29], [30], [31], adap-
tive wavelets [32]).

e  Architecture-dependent perturbations influence the
computational flow of the RBA, which becomes a
Perturbed Behavioral Architecture (PBA). PBA is an
abstraction of a physical architecture as architecture-
dependent perturbations are abstractions of physical
perturbations. Examples of physical perturbations
are introduced by the word-length dimensioning
of variables associated with the computational
flow [7], [8], quantization operators, look-up tables
and approximated nonlinear computation [33], [34]
on the digital side. In analog realizations, we
encounter fluctuations due to the production process
and “electronic” noise [35], transient and permanent
faults, and small deviations from the working point
due to aging effects. Also, the particular choice for
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Fig. 2. The multiply-accumulate digital architecture with perturbations
affecting the computation.

the physical platform implementing the applica-
tion, would it be a dedicated hardware or software
or both, is a sort of perturbation affecting the
computation (think of perturbations caused by
fixed or floating point representations). Such
aspects are also related to Hardware/Software
codesign (e.g., see [36]) since a proper word-length
dimensioning in a perturbed environment has an
immediate positive impact on computational com-
plexity and power consumption [7].

The above sources of uncertainty transform the beha-
vioral computation from correct to quasicorrect [4] since the
output provided by a physical device does not generally
coincide with the ideal value provided by an error-free
application and an error-free device. In addition, applica-
tion and architecture dependent perturbations have an
indistinguishable impact on the computation output, being
impossible to separate the different sources of “noise”:
Application and architectural perturbations are therefore
intrinsically and intimately related. The close relationship
between the two perturbations makes difficult the pertur-
bation versus final performance analysis. This effect
amplifies whenever the function associated with the
application solution is nonlinear and discontinuous as it
happens in the max or the sum of steps functions considered
in several applications [31], [33], [34].

Behavioral perturbations tackle physical errors by group-
ing them within a unique framework which abstracts their
complex nature. The consequence is that a physical
perturbation is only a realization of a behavioral perturba-
tion and, as such, does not need to be studied separately
from the others. The price we have to pay is that we lose
specificity, i.e., by considering a particular physical pertur-
bation (e.g., induced by truncation), we could improve the
robustness estimate being tailored to the specific error
phenomenon.

To shed light on the close relationships linking
behavioral perturbations a given RBA and the physical
counterparts, we focus the attention on a simple case, the
digital multiply-add-accumulator architecture of Fig. 2.
The analysis can be immediately extended to a more
complex architecture. The RBA is subject to four different
behavioral perturbations abstracting the physical errors:

e An independent perturbation 60 affecting each
coefficient of the filter. 60 could be associated with
a finite precision representation for the coefficients,
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e A perturbation 6, modeling the source of error
introduced by the multiplication operator (e.g., the
output of the multiplier is truncated to the same
number of bits of the operands),

e A perturbation 6, affecting the output of the
addition operator (e.g., a right shift of the
register containing the operand, a truncation of
the output, etc),

e A perturbation do (e.g., a truncation) to keep the
output defined on a fixed number of bits.

Obviously, in the case of a parallel RBA behavioral
perturbations would be inserted in different points of the
computational flow.

It must be noted that the presence of a perturbation in a
point of the computation must be intended as an equivalent
error affecting that specific point. The perturbation takes
care of all sources of errors introduced in the computation
between two subsequent perturbation-affected points. No
assumptions are made, for instance, on the specific
realization of the multiplier, which will be characterized
later on in lower levels of the design cycle. We only require
that the physical error generated by the physical device
implementing that part of the computation belongs to the
perturbation domain of the behavioral perturbation.

Therefore, we consider only mutually independent
perturbations, each of which represents an effective
equivalent error contribution in a specific point. The effect
of errors coming from previous computational modules and
propagated up to the envisaged one will combine with the
local error in a nonlinear way depending on the structure of
the computation and the chosen architecture. In fact, for the
Fig. 2 architecture, we have y =y, + éy with

oy = 6y((L‘) = 5y(667 60(‘1')7 oy (.17), o, (ZL’), l‘)

depending in a nonlinear and complex way on inputs and
propagated errors. A behavioral perturbation hides such a
complex unknown relationship by simply considering
perturbations defined within a feasible perturbation space.

From the specific example, we derive the general
procedure for associating a behavioral element with its
physical counterpart:

e Behavioral and physical architectures are structu-
rally the same. In fact, if we select a physical
architecture immediately, we have associated its
abstracting RBA and viceversa.

e A behavioral perturbation must be introduced in a
point of the behavioral computation whenever the
physical computation introduces in the same point
an independent source of uncertainty (e.g., caused
by truncation). We denote by A the perturbation
vector containing all behavioral perturbations asso-
ciated with a PBA and by k the dimension of the
perturbation space, namely the number of points of
the RBA to be simultaneously tested for robustness.

The designer, having in mind the final physical

architecture, will therefore identify the number and the
placement of perturbations in the RBA. The domain of the
behavioral perturbations derives from a priori hints (see the
experimental section) and experience; an automatic proce-
dure driven by HW/SW codesign strategies could be
successfully considered to characterize such an information.

In the case of Fig. 2 the perturbation vector is
A =[6by,---,80,, 06, 64,0,], where n represents the number
of coefficients of the linear filter. Of course, we could
assume no errors at the multiplier and at the adder outputs;
in such a case the behavioral perturbation vector to be
considered is A = [661, - - -, 60, 8,).

3 PERTURBATIONS, LOSS IN PERFORMANCE AND
RoBusT COMPUTATION

Denote by y=f(z), ye Y CR!, and z€ X CR? the
mathematical description of the behavioral computation
(the methodology also supports the extension to consider
y € R™). Let D C R* be the k-dimensional compact set of the
behavioral perturbations and A € D a generic architecture-
dependent perturbation affecting the RBA. The PBA
implementing the y= f(z,A) function is therefore a
perturbed realization of the RBA limited in performance
by A. In the perturbed space all PBAs belong to a
neighbourhood of RBA described by x and A spanning X
and D, respectively. If Vol(D) is the volume of the
perturbation domain D we have that

lim PBA=RBA VreX

2.1
Vol(D)—0 (2.1)

even if nothing can be said a priori about the statistical
nature of the neighborhood or the convergence properties
of the limit.

Surely, the accuracy of the PBA in tracking the RBA
depends on the specific application and its robustness, the
magnitude of the perturbation, and the architectural
structure of the RBA. In fact, if the application is
intrinsically robust the perturbation will induce a weaker
effect on final performance.

To compute the performance loss introduced by the PBA,
we consider a generic discrepancy function u(A) which is
assumed to be Lebesgue-measurable with respect to D.

A common discrepancy function requires the evaluation
of the average

u=u(&) = [ (o) = ler, A ddpady. (22
where ddp,, is the joint distribution density function
defined over (X,Y). In general, the evaluation of (2.2) is
complex and a closed form does not exist. Nevertheless, we
can approximate (2.2) with its empirical risk evaluated over
the available N, (z,y) pairs

N,
1

S (ya) - o A (23)

Refer to [26], [27], [37] for the minimum N,, granting a good
approximation of (2.2).

Another popular figure of merit used to quantify the
impact of a perturbation on a signal is the Noise to Signal
ratio NSR

=

3 (yla) — yplai,A))°
uw(A) = NSR = —=! : (2.4)

(y(%) - :“y) :

&

2~
M=

=1
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Fig. 3. The D domain is shadowed, all points outside the dashed circled
do not satisfy the u(A) < 4 bound; the set of D for which u(A) < ¥ has a
measure according to Lebesgue 1 — 1.

where p, is the mean value of the output. Since the
denominator is constant for a given application (2.4)
formally coincides with (2.3).

The designer will select, for each application, the most
suitable loss function u.

The selected PBA is acceptable if the loss in performance
induced by perturbations is such that

<< u(A) is small >> for VA € D. (2.5)

For instance, the ratio of (2.4) multiplied by 100 represents
the relative percentage loss in performance of the device.
The device is robust and solves our application if (2.4) is
below some tolerated loss in performance. This observation
directly leads to the concept of robust computation.

3.1 The Deterministic Definition of Robust
Computation

We say that a computation is robust at level 4 for a given D

when 7 is the minimum positive value, granting that

u(A) < 7 is satisfied VA € D.

The computation is robust if ¥ is below some tolerable
loss in performance directly coming from the accuracy
requirement of the application. Note that the interval [0, 7]
contains all the possible losses in performance associated
with a given PBA when the architecture-dependent
perturbations span D.

We can finally suggest a constructive algorithm for
comparing the robustness of different architectures: Archi-
tecture C} is more robust than architecture Cs if 31 < 7.

The designer can consider different RBAs and test
several PBAs: The PBAs solving the application have s
below the acceptable performance loss.

The deterministic problem cannot be solved in a closed
form for a generic function; in addition a point by point
investigation would require an infinite number of tests for a
continuous D. To solve such a computationally intractable
problem we weaken the deterministic problem by formu-
lating a dual probabilistic one.

3.2 The Probabilistic Definition of Robust
Computation

We say that a computation is robust at level 4 for a given

D. when ¥ is the minimum positive value granting that

u(A) <7 is satisfied YA € D at least with probability :

Pr(u(A) <5) >n, VAeD. (2.6)
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EXTRACT p;»__ 6 POINTSFROM D)

2¢

GENERATE THEFUNCTION p = p_(¥):
SELECT THEMINIMUM ¥, SOTHAT §,(¥)=1,v7.7,,:

¥, 1S THE ESTIMATE OF 75

Fig. 4. The procedure for computing

Differently from the deterministic problem the probabilistic
one tolerates the existence of perturbations As not satisfying
the u(A) < 7 inequality.

Denote by A;,; a generic point satisfying the u(A) <74
inequality. We have that 7 represents the ratio between the
volume of perturbation points satisfying the u(A) <4 and
the total volume of the perturbation space

=, Vol(Am;,): / dA.

Diny

VOZ(Am:,) (27)
Vol(A)

In other words, we tolerate the fact that some perturbations

might not satisfy the bound; the Lebesgue measure of such

a set is 1 — . This situation has been geometrically depicted

in Fig. 3.

From the geometrical interpretation of the probabilistic
robust computation we have that in probability at least 1007
percent of perturbations A will generate a loss in
performance below 4. Of course, ¥ depends on the size of
D, the robustness of the application, and the position in
which the perturbations have been injected in the computa-
tional flow.

It is relevant to outline that when n =1 all points in
probability satisfy the inequality; anyway, there could exist
a not empty set of points {2 not satisfying it; the Lebesgue
measure of such set is anyway null (and, hence, null the
probability of extracting them).

When the function is continuous with respect to X and D,
so is the u(A)-transformed space. Under this assumption we
have that the points not satisfying the requirement, if any,
lie close to the ones which satisfy it [38] and, hence, the
estimate for 7 is reliable even if 2 is not null.

In the following, we will require n to be 1 to grant, at
least in probability, that all points satisfy the inequality. In
this case, the probabilistic robust computation and the
probabilistic one coincide with a probability of one and the
obtained ¥ becomes an effective estimate for the robustness
degree of the computation when executed by the PBA.

Of course, we would like ¥ to be as small as possible
since this implies a small loss in performance (the output of
the PBA would float in a small neighborhood of the RBA).

4 characterizes the robustness degree of the PBA and
allows the designer to solve two architectural problems at
the very high levels of the design flow:

1. Identify a set of RBAs, the associated PBAs, and test
their robustness.

2. Given RBA and its PBA, test the robustness of the
computation by considering increasing sizes for D
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py(¥)=1,V 7.7 IS SATISFIED;

In
FOR EACH APPLICATION/ARCHITECTURE EXTRACT N> & POINTS FROM D

GENERATE THE FUNCTIONS p = px(;/)

FOR EACH FUNCTION R\, = p\ (}/) SELECT THE MINIMUM ¥ SO THAT

SELECT THE APPLICATION/ARCHITECTURE ASSOCIATED WITH THE SMALLEST AMONG 7S

2¢”

Fig. 5. The procedure for selecting the best architecture/application within a given set.

(i.e., we consider perturbations having increased

magnitude).
During the design phase the designer will try to enlarge the
size of D as much as possible still keeping the performance
loss 4 below the acceptable level. The size of D has an
immediate impact on subsequent design phases since it can
be directly related to the dimensioning of the module
implementing the computation. In fact, if the final im-
plementation is digital then a large D implies that we can
reduce the number of bits to represent the perturbation-
affected variables or that the module implementing the
computation can be implemented with a lower resolution.
Independently from the way the computational module is
implemented its effective physical error must belong to D to
grant a performance loss below #¥. Conversely, if the
realization is analog, we can identify the accuracy required
by the components (tolerable deviations from their nominal
value). In general, any physical perturbation belonging to
D, however it has been generated, will induce a
performance loss below % and, hence, acceptable by the
application.

4 A RoBuUST COMPUTATION ANALYSIS BY
RANDOMIZED ALGORITHMS

In this section, we suggest a methodology for testing the
robustness of a computation by computing the robustness
degree 7.

Denote by p, = Pr{u(A) <~} the probability that the
performance loss is satisfied for each A € D given—but
generic-nonnegative performance loss v. Unfortunately,
py is unknown and its characterization would require
the exploration of the whole perturbation space, a

TABLE 1
D and the Corresponding Number of Bits

Perturbation 06 é. ¢, éo
Extreme interval | 0.25 | 0.125 | 0.25 | 0.0625
a
Number of bits
2 3 2 1
equivalent to «

computationally intractable problem. We resort then to
randomized algorithms, which transform the intractable
problem in a tractable one by suitably sampling the
perturbation space.

4.1 Randomized Algorithms

Let u be a function measurable according to Lebesgue with
respect to the perturbation space D. Extract from D a set of
N independent and identically distributed samples A,;
according to the associated probability density function.
Generate then the triplets

{Anu(A), I(Ai)},i=1,N, (4.1)
where I(4;) is the indicator function
L1 if u(4) <~
I(A) = {O it u(A) > . (4.2)

and v is a given nonnegative value.
The unknown probability p, = Pr{u(A) <~} can be
approximated with the frequency

1
oy =— » I(A)). 4.3
Py = D14 (43)
It is reasonable to expect that by increasing the number of
samples py tends to p, within an accuracy degree ¢. Since
Py is a random variable depending on the particular
realization of the N samples the |py — p,| < ¢ inequality is

09r
08r
07r
06
05p
04r

PGamma

03f
02
01

o

0 ] 2 3 2 5

Garnma

Fig. 6. px = pn(7), accuracy 5 percent, confidence 99 percent.
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TABLE 2
The Different u Associated with Different N, and N Sampling

Run 1 2 3 4
Mean(u) 0.961 0.975 0.960 0.973
Max(u) 2.141 2.462 2.415 2.259

a random variable as well. By introducing a confidence
degree 1 — 6, we shall require that

Pr{|p, —pn| <e} >1-6, Vy>0,V5,e€[0—1]. (4.4)

The number of samples N granting (4.4) to hold Vv >
0,Vé,e € [0 — 1] is bounded by the Chernoff inequality [9] :

N>
For instance, by considering a 5 percent in accuracy and
99 percent in confidence we have to extract 1,060 samples
from D; with such N we can approximate p, with py
introducing the maximum error 0.05

(4.5)

(pn —0.05 < py < py + 0.05);

the inequality holds at least with probability 0.99.

Other bounds can be considered instead of the Chernoff
as suggested by Bernoulli and Bienayme [18]. Nevertheless,
the Chernoff bound improves upon the others and, there-
fore, should be preferred if we wish to keep minimal the
number of samples to be extracted. The Chernoff bound
grants that

e N is independent from the dimension of D (and,
hence, it does not depend on the number of
perturbations k we are considering),

e NislinearinIn} and % (and, hence, it is polynomial
in the accuracy and confidence degrees).

The probabilistic problem for a robust computation at level
v can be solved with Randomized Algorithms and, hence,
with a polynomial complexity in the accuracy and the

0 1 2 3 4 5

Gatnma

Fig. 7. py = pn(v), accuracy 5 percent, confidence 99 percent, four
runs, N, = 40,N = 1060.

confidence degrees independently from the number of
points to be tested for robustness. In fact, from (4.4) and
(4.5) it follows that

Pr{[p, —pn[ <e} 21-6=

Pr{ Pr(u(A) <7) — %ZI(AJ < E} >1-6. (4.6)

From (4.6), if the accuracy ¢ and 1 — § are small enough, we
can confuse p, and py with high accuracy and the
probabilistic robust computation problem requiring p, > 7
becomes equivalent to py > 7. We assume € and 1 — ¢ to be
small enough in subsequent derivations.

4.2 Problem 1: Testing the Robustness of a
Behavioral Computation (Application)

To test the robustness of an application with respect to a set
of points within the computation we have first to
characterize D. D can be provided by some automatic
design tool, deduced from a priori information about the
entity of physical perturbations, or directly suggested by
the designer. We can then determine the upper bound 7 for
v granting that VA € D the performance loss is smaller than
4 with probability one. The obtained % represents the
maximum loss in performance of the application and,
hence, it measures the robustness of the application with
respect to the test points. The procedure based on
Randomized Algorithms is given in Fig. 4.

4.3 Problem 2: Testing the Robustness of
a Given Architecture

This problem is a subcase of the previous one and aims at
estimating the robustness of a RBA once subject to a set of
perturbations. We remind (Section 2) that behavioral
entities are abstractions of physical entities; the problem is
therefore equivalent to test the robustness of a given physical
architecture by considering its abstract counterpart.

The first step requires associating a behavioral perturba-
tion in the RBA to each independent source of perturbation
we expect in the computational flow (again we do not have
to consider the propagation of errors along the computa-
tion). The algorithm to be considered is again that of Fig. 4.

4.4 Problem 3: Selecting the Best Architecture/Most
Robust Application within a Set of
Architectures/Applications

Given a set of architectures solving a given application we

wish to determine the best one, defined as the PBA having

the minimum value for 4. Selection of the most robust

application among a set of equivalent applications is a

similar problem which can be solved with the same



ALIPPI: RANDOMIZED ALGORITHMS: A SYSTEM-LEVEL, POLY-TIME ANALYSIS OF ROBUST COMPUTATION

747

TABLE 3
Three PBAs
Perturbation | 56 é. é. &0 Mean(u) Max(u)
Experiment 1 3 3 3 3 0.272 0.620
Experiment 2 2 2 1 2 1.395 3.351
Experiment 3 1 2 2 2 3517 8.541

The difference is in the size of D.

methodology. In both cases, we have to consider the
algorithm of Fig. 4 suitably extended to extract the minimum
among the different solutions as suggested in Fig. 5.

The presented procedures solve different aspects of the
robustness problem. It is the designer task to identify the
correct procedure on the basis of the application require-
ments. For instance, if our goal is to identify the computa-
tion robustness of a computational flow that needs to be
executed on given architecture we have to consider
Problem 2. Conversely, if we wish to select the most
robust architecture among a set of computationally
equivalent architectures, we have to consider Problem 3.

5 EXPERIMENTAL RESULTS

In this section, we explain how the suggested procedures
can be used to solve a real application. For its interest and
simplicity, we focus the attention on the scalar product
computation by considering as RBA the multiply-add-
accumulate architecture of Fig. 2. The linear filter we are
considering has fixed coefficients [1.23 — 2.5 3.4 2.2 — 1.34]
and receives uniformly distributed inputs in the [-5,5]
interval.

As a first example, we wish to test the robustness of a
behavioral architecture (Problem 2) in order to dimension
the associated physical one.

To this end we assume that each component of the
behavioral perturbation vector is uniformly distributed in
the [—«,a] interval. The choice of D has an immediate
impact on the associated physical architecture. In fact, since
the distribution is uniform and the interval symmetric, we

have a straight relationship between o and the number of
bits 4 we consider to represent the decimal part of the
perturbed variable.

In fact, if truncation is envisioned as a finite precision
representation technique, we have that a =279 a similar
relationship holds also for rounding [11].

Table 1 explains the relationships between the domain of
the behavioral perturbations characterized by « affecting
the RBA and the dimensioning, at a bit level, of the
variables involved in the computation, i.e., the associated
physical architecture.

With respect to the table, the fact that o associated with
6o is smaller than that of ¢, implies that we are considering
a higher precision to represent the output of the
computation than the one considered for the output of
the multiplier.

To test the robustness of the computation running on the
RBA we considered a 5 percent in accuracy and 99 percent
in confidence; from the Chernoff bound we need to
uniformly extract from D at least 1,060 samples.

According to the algorithm given in Fig. 4 we generated
the py =pn(y) function of Fig. 6. We note that the
minimum ¥ so that py(7) =1 is 2.141. Again, this means
that at least with probability 0.99 we can assert that
u(A) < 2.2,YA € D. If we can tolerate such loss in perfor-
mance then we have validated the PBA and, indirectly, the
associated physical architecture. Conversely, if the loss in
performance cannot be tolerated we either have to consider
a different RBA or PBA, e.g., by varying the number of bits
and, hence, the size of the perturbation domain.
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Fig. 8. px = pn (7). D as in Table 3.

Fig. 9. The histogram of the performance loss for the Experiment 2,
Table 3.
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TABLE 4
Accuracy, Confidence and N for Experiments 2 and 3

Experiment Accuracy € | Confidence 1-6 | Samples N
Experiment 1 5% 99% 1060
Experiment 2 5% 99.99% 1981
Experiment 3 1% 99.9% 38005

Since the Chernoff bound requires N samples to be
extracted from D, it is interesting to study the
sensitivity of py =pny(y) with respect to different
extractions of N =1,060 samples.

Four runs have been considered with results provided in
Table 2. The average of u with respect to the perturbation
samples are almost identical as well the maximum values:
At least for the chosen RBA, the procedure is robust with
respect to the different samplings; differences are obviously
associated with the particular realization of N samples and
the considered accuracy.

The respective py = pn(7y) curves are given in Fig. 7. We
note that such curves are nicely compact to evidence a small
dependency in the specific realization of the N sampling.

As a second relevant example, we considered the best
architecture selection problem (problem 3). We compared
three physical architectures mapped onto three different
PBAs. PBAs differ in the size of D, namely in the number of
bits 4 we will consider to represent the decimal parts of
variables. The dimension of D is given in Table 3.

We kept the same experimental setup in terms of
accuracy and confidence. The resulting py = pn(7y) func-
tions are given in Fig. 8 a number on the function
characterizes the experiment. We note that, when high
precision is considered (e.g., Experiment 1) the curve
increases rapidly and ¥ is very small. In such a case, we
can assert that the computation is extremely robust and all
perturbations will, with high probability, induce a small
loss in performance.

PGamma

g P 5 j :
Fig. 10. pxy = pn (7). Experiments 2 and 3. Accuracy, confidence, and N

as suggested in Table 4.

Conversely, if quantization becomes severe, e.g., as it
happens in Experiment 3, 7 is very large (in the plot outside
the definition interval). Since the best architecture is the one
characterized by the smallest among the s (as suggested in
the procedure given in Fig. 5) we should select the first
architecture as the most robust and performing one. Note
that the methodology has not been developed for selecting
the best architecture but for testing the architecture loss in
performances in polynomial time. Architecture selection
among a set of given architectures is a nice consequence.

With respect to the second experiment, we evaluated the
frequency of the performance loss in correspondence with
the different perturbations. The frequency is given in Fig. 9.
A priori hypothesis about the error distribution as done in
the literature is therefore unacceptable: The frequency
strongly depends on inputs, PBA, and D. We observe that
the probability of selecting a perturbation inducing a very
high loss performance is low. As a further experiment,
we tested the sensitivity of the given application and
architecture with respect to different ¢ and ¢ degrees (we
required in the methodology e and ¢ to be sufficiently
small). We considered three experiments with ¢ and ¢ as
given in Table 4.

Results are given in Fig. 10. We observe that the
methodology is almost insensitive to € and ¢ variations in
this application. This information grants that the obtained
results hold with high accuracy (¢ = 0.001) and confidence
(1 -6=0.999). Conversely, in this PBA, we obtain good
reasonable robustness estimates also with a limited number
of samples. The saved simulation time can be used by the
designer to test other architectures, still keeping under
control the time to market.

6 CONCLUSIONS

This paper provides a methodology for analyzing the
impact of perturbations on performance for a generic
Lebesgue-measurable computation (basically all functions
involved in signal/image processing are Lebesgue-measur-
able). The associated robustness problem, whose solution is
computationally intractable, can be nicely addressed with a
poly-time procedure based on Randomized Algorithms.
Behavioral perturbations have been considered to keep the
analysis technology and finite precision representation
independent and characterize the robustness of an applica-
tion/architecture. The suggested methodology allows select-
ing the best architectural solution among a set of possible
candidates as well as quantifying the impact of perturba-
tions affecting a given architecture at the very high level of
the design cycle.
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