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Application-Level Robustness and Redundancy in Linear
Systems

Cesare Alippi

Abstract—The paper quantifies the degradation in performance of a
linear model induced by perturbations affecting its identified parameters.
We extend sensitivity analyses available in the literature, by considering a
generalization-based figure of merit instead of the inaccurate training one.
Effective off-line techniques reducing the impact of perturbations on gen-
eralization performance are introduced to improve the robustness of the
model. It is shown that further robustness can be achieved by optimally re-
distributing the information content of the given model over topologically
more complex linear models of neural network type. Despite the additional
robustness achievable, it is shown that the price we have to pay might be
too high and the additional resources would be better used to implement a

-ary modular redundancy scheme.

Index Terms—Linear computation, linear neural networks, perturbation
analysis, robustness, sensitivity.

I. INTRODUCTION

Application robustness, defined as the ability to provide a contained
degradation in performance when the algorithm solving the application
is perturbed in its structural parameters, has an immediate impact on the
design of a reliable circuit. In fact, given two applications A1 and A2
(with A1 more robust than A2), a physical device, and perturbations
having the same magnitude, then the experienced loss in performance
of A1 is smaller than that of A2.

The robustness of a computational flow subject to perturbations af-
fecting its parameters has been widely studied in the literature. Results
can be used within an analysis framework [1], [2] to validate an ar-
chitectural design (perturbations are applied to parameters and the loss
in performance is evaluated at the device output) or to provide design
guidelines for the subsequent implementation (synthesis phase) [1], [3],
[4]. The analysis phase is generally embedded in the synthesis one to
estimate the robustness of a candidate solution; for its interest, we focus
the attention on the analysis phase.

Methods provided in the literature for robustness/sensitivity
analyses of parameterized models are generally tailored to a specific
computational model, i.e., linear/nonlinear, with known/unknown
parameters while suitable hypotheses are envisioned to make the
mathematics more amenable. When the coefficients of a linear model
are known the perturbation analysis is simple and the perturbation/per-
formance relationship can be easily derived in a closed form (e.g.,
see [4]). Conversely, when the model becomes nonlinear, a Taylor
expansion for the model or the loss function is generally considered
(e.g., see [1], [5] and [6]).

The robustness analysis becomes more complex when the coeffi-
cients of the model are unknown and need to be identified from a set
ZN of N(input; output) pairs [7], [8]. In such a case, the presence
of noise-affected data and a limitedN reflect on the model coefficients
which differ, in probability, from the unknown nominal ones. To ad-
dress this relevant case some authors assume that the identified coef-
ficients are the true ones while others opt for a statistical approach by
assuming convenient distributions for the involved entities [3], [4].

Manuscript received February 1, 2001; revised January 29, 2002. This paper
was recommended by Associate Editor G. R. Chen.

The author is with Dip. Elettronica e Informazione, Politecnico di Milano,
Milan 20133, Italy.

Publisher Item Identifier 10.1109/TCSI.2002.800840.

In both cases, the sensitivity analysis is based on a training error
function to quantify the performance loss of the perturbed model. As
training figures of merit are inadequate to evaluate the performance
of a model and generalization indexes must be considered instead, so
an accurate sensitivity analysis must be related to validation figures of
merit and not to training ones.

The involved entities can be formalized as follows. Denote byy =
�ox the unknown reference model characterized by thed-dimensional
column vector of inputsx and thed-dimensional row vector of param-
eters�o. As with the classic identification theory [7], we assume that
the available measured outputy satisfies they = y + " model, where
" = WN(0; �2") is an additive, independent and identically distributed
stationary noise.

Note thatx can be a nonlinear functionx = g(z) in the external input
vectorz, independent from�o: a polynomial expansion is therefore a
linear model in its coefficients.

We consider the general case in which�o is unknown and a model
family M0: ŷ(�) = �x is selected for the parameter identification
phase [3]. We observe thatM0 can also be interpreted as the simplest
model of a nested linear neural network hierarchyM: M0; M1 �

M2 �M3 � � � �Mk � � � (whereMk stands for a linear network with a
single hidden layer ofk units and a bias term only on the linear output
neuron).M0 can be intended as degenerate model (zero hidden units)
ofM. For its nature, modelMk can degenerate toM0 in force of the
linear property by carrying out a multiplication between the weights
associated with the two layers.

The aim of the paper is to extend and complete results given in the
literature by:

• providing a novel approach to evaluate the robustness of model
M0 based on its generalization ability and not on its training error;

• introducing off line transformations to improve the robustness
ability of M0;

• investigating the relationships between robustness improvement
and topological redundancy obtainable by considering a more
complex modelMk instead of modelM0.

The structure of the paper is as follows. To characterize the robust-
ness ability ofM0 we introduce, in Section II, an appropriate general-
ization-based performance loss function. Off-line transformations are
then suggested in Section III to improve the robustness ofM0. The gain
in robustness obtainable by redistributing the information content of
M0 over suitable models ofM is also provided. An example showing
how to improve the robustness of a linear filter is finally given in Sec-
tion IV.

II. A GENERALIZATION-BASED FIGURE OFMERIT FORROBUSTNESS

In the following, we assume that parameter identification for model
M0 is based on a Least Mean Squared procedure (e.g., see [7]) mini-
mizing the training function

Jtr =
1

2N

N

i=1

(yi � ŷ(�; xi))
2 (1)

which provides the estimatê� of �o having generalization perfor-
manceJval(�̂). A generic perturbation�� affecting�̂ provides the
perturbed vector̂�+�� of generalization performanceJval(�̂+��).
A correct measure for the loss in performance is thereforeJval(�̂ +
��)� Jval(�̂) and not the training error discrepancyJtr(�̂ + ��)�
Jtr(�̂) as considered by several authors. It should be noted that cross-
validation techniques are useless in our analysis since they provide the
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punctual loss estimateJval(�̂ + ��)� Jval(�̂) but not the analytical
function describing the relationships between model, perturbation and
generalization performance loss. In addition, cross-validation estimates
cannot be taken into account when a limitedZN is available. Such prob-
lems can be overcome by following the analysis suggested in [9], [10]
where a theory for estimatingJval(�) valid also on a limited data set
is presented. There, by suitably expanding with TaylorJval(�) and
Jtr(�) around�o, evaluating the expansion in̂� and taking suitable
averages, it is shown that the expected validation performanceJval(�)
is related to the expected training performance as

E Jval �̂ =
N + p̂

N � p̂
E J 00

tr �̂ (2)

where expectation is taken over all possible sets ofN training pairs
ZN ; p̂ = rank(Jtr(�̂)) is an estimate of the effective number of
parameters used by the model to fit the data (p = d for M0 if the rank
of the Hessian form associated with the training error is full).

In reality, we have only one training data set and we cannot take the
average required by (2). In such a case it can be shown [7], [9], [10]
that

Jval �̂ =
N + p̂

N � p̂
Jtr �̂ + f(�o) (3)

wheref(:) is an unknown function. Fortunately, since we have to com-
puteJval(�̂ + ��) � Jval(�̂), the dependency off(:) disappears in
the robustness analysis and the variation in generalization performance
can be expressed as

�J = Jtr �̂ + ��
N + p̂+ �p

N � p̂� �p
� Jtr �̂

N + p̂

N � p̂
: (4)

�p models the possible variation in rank induced by the perturbation.
By expanding with TaylorJtr(�̂ + ��) around�̂ and remembering
that the gradient is null (the training procedure ends in a minimum for
Jtr), we have thatJtr(�̂ + ��) = Jtr(�̂) + (1=2)��TJ 00

tr(�̂)��,
which, inserted in the above, provides

�J =
1

2
��T J 00

tr �̂ ��
N + p̂+ �p

N � p̂� �p
+

�̂2�p

N � p̂� �p
(5)

where�̂2 is an estimate of the noise variance (e.g., see [10]). We ob-
serve that if�p < 0 and�J < 0, the perturbation improves the per-
formance of the model. This comment can be related to the Principal
Component Pruning technique suggested in [11] and constitutes the
bases for other pruning techniques such as Optimal Brain Damage [12]
and Surgeon [13]. Since these perturbations improve the generalization
ability of the model they should be always considered at the model op-
timization level. Without loss of generality we can, therefore, assume
that modelM0 has been correctly dimensioned and, hence, that the
probability of having a continuous perturbation modifying�p is null.
We, therefore, have that�p = 0 and the (5) becomes

�J =
1

2
��T J 00

tr �̂ ��
N + p̂

N � p̂
: (6)

After model optimization the HessianH = J 00

tr = (1=N) N

i=1 xx
T

is definite positive by construction and hence, from (6), any perturba-
tion introduces a loss in generalization performance. The facto, the�J
suggested by (6) constitutes an estimate of the generalization perfor-
mance loss when the linear model is subject by a generic perturbation
��.

In perturbation analyses we can identify two interesting cases. The
worst case perturbation, which addresses the evaluation of the max-
imum amplification of�J , and the average case perturbation, which
quantifies the average value of�J .

Worst Case Perturbation Analysis

The worst case perturbation occurs when�� = j��ju� max, i.e.,
the perturbation is parallel to the eigenvector associated with the max-
imum eigenvalue�max(H) of the Hessian. From (6)

max �J = �max(H)j��j2
1

2

N + p̂

N � p̂
: (7)

An index for measuring the robustness of modelM0 is therefore

Rmax(H) = �max(H)
1

2

N + p̂

N � p̂
:

Average Case Perturbation Analysis

Likewise, we can easily compute the average case perturbation. If
we assume that the components of the perturbation vector�� are inde-
pendent and identically distributed with zero mean and variance�2��
we have that

E��[�J ] =
1

2

N + p̂

N � p̂
tr ����T J 00

tr �̂

=
1

2

N + p̂

N � p̂
�2��

d

i=1

�i (8)

wheretr is the trace operator and�i theith eigenvalue ofH . A crite-
rion for robustness can be derived by neglecting the dependency of the
perturbations

Ravg(H) =
1

2

N + p̂

N � p̂

d

i=1

�i(H):

Note that expressions (7) and (8) decouple the performance loss in two
contributions: the first refers to the strength of the perturbation (i.e.,
its magnitude or variance), the second depends only on the application
(the eigenvalues).

As an example, consider a general-purpose digital implementation
for M0. As a perturbation source we consider truncation which ne-
glects bits of weight below2q. Therefore, the maximum magnitude to
be used in (7) isj��j2 = d22q while the variance associated with such
a perturbation is bounded by�2�� = 22q=3 [1]. The synthesis phase
will use such information to dimension theq granting an acceptable
loss in performance as done in [1], [4].

Differently, the robustness indexes are affected by the application but
they are not function of the perturbation magnitude (which is consid-
ered fixed).

III. ROBUSTNESSIMPROVEMENT AND STRUCTURAL REDUNDANCY

From the previous section, it is obvious that we would like to min-
imize Rmax andRavg to keep under control the impact of perturba-
tions on the device performance; this can be accomplished with off-line
transformations and by exploiting structural redundancy.

A. Off-Line Transformations to Improve the Robustness of ModelM0

Lemma 1: Lossless Transformation:A transformation leading to
zero mean inputs does not worsen the worst case perturbation and al-
ways improves the average case perturbation.

To prove the lemma we considerM0: � = [W; b� ] where� is the
d + 1 dimensional input vector having the nonnull mean vector��
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andb� is the model bias. Denote by�� = [�W; �b] a generic contin-
uous perturbation. From (6) we have that�J = (1=2)((N + p̂)=(N �
p̂))(�WH��W

T + �2b). The Hessian can be written as

H� =
1

N

N

i=1

��T =
1

N

N

i=1

(x+ ��)(x+ ��)
T

=
1

N

N

i=1

xxT + ���
T
� = Hx +M

with M = ���
T
� . By invoking the Weyl theorem [15] we have that

�l(Hx) + �max(M) � �l(H�) � �l(Hx) + �min(M) holds 8 l

with �min(M) = 0 sinceM is a semidefinite positive matrix by
construction and�max(M) = tr(M). In particular, we have that
�max(H�) � �max(Hx) from whichRmax(Hx) � Rmax(H�) and
the first part of the lemma is proved.

The average case perturbation always improves since the sum of
eigenvalues equalizes the trace ofM , which is always strictly posi-
tive if Mdiffers from the zero matrix. The second part of the lemma
follows by noting thattr(H�) = tr(Hx) + tr(M) > tr(Hx) from
whichRavg(Hx) � Ravg(H�).

The main consequence of the lemma is that a simple off-line trans-
formation, which transforms the input to be zero mean, improves the
robustness ofM0. It is obvious that the transformation, which only
modifies the bias term ofM0, does not change the generalization per-
formance.

Lemma 2: Lossy Transformation:A tolerated pruning transforma-
tion improves the average case perturbation.

If we note that an extended pruning technique impliesk connections
removal, the HessianHx of orderd becomes the reduced HessianHx; k

of orderd–k. For its natureHx; k � Hx and, therefore, by invoking
the interlacing-Cauchy theorem [15], which states that the eigenvalues
of Hx; k are suitably interleaved with those ofHx, the thesis follows.

B. Structural Redundancy Techniques to Improve the Robustness of
ModelM0

The section investigates the possibility of improving the robustness
of M0 by considering a structural redundancy scheme which redis-
tributes the information content of the application over more complex
models. The class of models we consider for structural redundancy is
the class of linear neural networksM. By neglecting the bias contribu-
tion term, thekth model ofM is characterized by(1+d)k weight and,
hence, with respect toM0 (d weights), it possesses a potential struc-
tural redundancy. Denote by� the weight vector between hidden units
and output unit and with~�i the generic weight vector between theith
hidden unit and the input ones.

Lemma 3: Sufficient Conditions for Structural Redundancy:

• Local improvement in robustnessa generic modelMk is lo-
cally more robust thanM0 with respect to generic perturbations
of magnitudej��j affecting:

1) the� coefficients ifk~�k2 < 1;
2) the~�i coefficients if�i < 1.

The robustness indexRmax improves whenk~�k2 and �i get
closer to zero.

• Global improvement in robustness

3) Given modelM0 of weightsW and chosen an arbitrary
value� < 1, any modelMk with k > jW j2=�2 grants
Rmax(H(Mk)) � Rmax(H(M0)) for any perturbation
affecting the weights of generic linear neuron. ModelMk

can be constructed by setting�i = �; 8 i = 1; k and
~�i = W=k�; 8 i = 1; k.

The detailed proof of the theorem is given in [19], here we pro-
vide only a sketch of it. In can be shown that�J of (6) can be trans-
formed in a canonical form in which the Hessian is split in matrices
either dependent on~� or �. It is then studied the effect of the pertur-
bations on� (point 1 of the Lemma) and~� (point 2 of the Lemma). In
the former case, by bounding�J associated withMk we obtain that
Rmax(H(Mk)) � k�k22Rmax(H(M0)): by requiringk~�k2 < 1 point
1 one the lemma is proved.

Similarly, in the latter case, we obtain thatRmax(H(Mk)) �
�
2

1Rmax(H(M0)) from which the thesis follows by requiring�i < 1.
To prove the third point of the lemma we constrain modelMk to
satisfy point 1 and 2, subject to the additional linear constraints
W = �~�. Without loss of generality, by setting all coefficient of
� to � and considering the Moore–Penrose pseudoinverse�

+
we

have that~� = �
+
W from which the ~� matrix is composed of

identical rows of valueW=k�. Finally, by requiring the spectral radius
k~�k2 = jW j=�pk to be smaller than one we obtain the minimumk
granting the improvement in robustness.

The lemma shows that by spanning the hierarchy we can both im-
prove locally and globally the robustness of the model with respect to
the worst case perturbation case by considering perturbations affecting
either� or ~�i. Note that global robustness requires all neurons com-
posing the linear neural network to be more robust than modelM0. In
particular, lemma 3 states that the improvement is achievable with an
arbitrary robustness value by acting on� and selecting an appropriate
modelMk . To show the dependency in�, from the proof of Lemma 3
we have thatRmax(H(Mk)) � �2Rmax(H(M0)) for perturbations
affecting ~�i andRmax(H(Mk)) � (jW j2=k�2)Rmax(H(M0)) for
perturbations affecting�. We should compare the gain in robustness�
obtained by considering modelMk instead of modelM0 with the in-
crease in model complexity. From the above two relationships we have
that, once suitably selectedk, Rmax(H(Mk)) � �Rmax(H(M0))
holds for a generic perturbation affecting a generic linear neuron of
Mk with � = max(�2; jW j2=k�2). Computational complexityC,
here defined as the number of parameters of the model (and hence re-
lated to the number of multiplications and additions to be implemented)
increases from thed weights ofM0 to then = k(d + 1) of Mk .
From lemma 3n � (jW j2=�2)(d + 1) and, therefore,C(Mk) �
(jW j2=�2)((d + 1)=d)C(M0). Both the robustness gain and model
complexity scale quadratically with�2.

From the theory point of view, the result is surely appreciable by it-
self. Nevertheless, we have to compare the computational cost of struc-
tural redundancy with the one requested to implement a classic fault
tolerance redundancy architecture. In such a case, by neglecting low
order contributions, modelMk would require a complexity roughlyk
times that ofM0. We could have used instead thek unitsM0 to im-
plement a classick-ary modular redundancy scheme based on a replica
mechanism forM0 and a voting unit at the end. Such a solution sup-
ports ak � 1 error detection and correction ofk � 2 errors [16], [17];
here errors are induced by perturbations affecting the redundant units.
With this schema we can provide a correct result whereas information
distribution over modelMk always introduces an error (even if it can be
made arbitrarily small). After these observations, Lemma 3 implicitly
states that the improvement in robustness with spatial redundancy over
M is too costly from the performance/computational point of view.

IV. CASE STUDY: CONSTRUCTING AROBUSTCONVOLUTION MODULE

In this section, we consider the linear “peak detection” filter
y = 0:25�(t � 2) + 1:25�(t � 1) + 0:25�(t) � 1. N = 500
inputs have been extracted from a nonzero mean Gaussian
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(a) (b)

Fig. 1. (a) The original filter. (b) The transformed filter.

distribution � = N(4; 0:04). The eigenvalues of the Hes-
sian are eigen(H�) = [3:7868; 3:7278; 52:9061] and then
Rmax(H�) = 26:7724 andRavg(H�) = 30:5751.

By applying Lemma 1, and hence transformation� = x + 4, we
have zero mean inputs [i.e.,x = N(0; 0:04)] and the new filter
becomesy = 0:25x(t � 2) + 1:25x(t � 1) + 0:25x(t) + 6. The
new eigenvalues areeigen(Hx) = [3:7834; 3:7259; 3:9388] with
Rmax(Hx) = 1:9932 andRavg(Hx) = 5:7931. It is immediate to
observe that the transformation significantly reduced the impact of the
worst and the average perturbation cases.

To experimentally test the impact of physical perturbations onJval

we represented the coefficients of the filter in a fixed point truncation-
based notation. We then applied perturbations affecting a randomly
chosen bit for each coefficient of the filter (there are therefore 3 si-
multaneous faults within the filter). We then tested the impact of errors
onJval before and after the transformation on the same fault set. The
histograms of the induced variation inJval are given in Fig. 1(a) for the
original filter and in Fig. 1(b) for the transformed one. We immediately
see that after the transformation, the new filter is significantly more ro-
bust since the effect of the generalization abilityJval is reduced.

V. CONCLUSIONS

The paper investigates the robustness issue in linear models whose
coefficients have been identified from a set of measured data. It is
shown that the difficult problem of considering the generalization error
as loss function can be tackled by following the statistical approach
leading to the network information criterion and final prediction error
criteria. Off-line transformations can be derived which improve the ro-
bustness of the computation. An additional gain in robustness can be
achieved by considering more complex linear models implementing a
sort of structurally redundancy. Despite the achievable gain in robust-
ness, the computational complexity is not justified when compared with
performance obtainable by a classicn-ary modular redundancy scheme
requiring the same resources.
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