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Application-Level Robustness and Redundancy in Linear
Systems

Cesare Alippi

Abstract—The paper quantifies the degradation in performance of a
linear model induced by perturbations affecting its identified parameters.
We extend sensitivity analyses available in the literature, by considering a
generalization-based figure of merit instead of the inaccurate training one.
Effective off-line techniques reducing the impact of perturbations on gen-
eralization performance are introduced to improve the robustness of the
model. It is shown that further robustness can be achieved by optimally re-
distributing the information content of the given model over topologically
more complex linear models of neural network type. Despite the additional
robustness achievable, it is shown that the price we have to pay might be
too high and the additional resources would be better used to implement a
n-ary modular redundancy scheme.

Index Terms—Linear computation, linear neural networks, perturbation
analysis, robustness, sensitivity.
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In both cases, the sensitivity analysis is based on a training error
function to quantify the performance loss of the perturbed model. As
training figures of merit are inadequate to evaluate the performance
of a model and generalization indexes must be considered instead, so
an accurate sensitivity analysis must be related to validation figures of
merit and not to training ones.

The involved entities can be formalized as follows. Denoté by
O°x the unknown reference model characterized byitldémensional
column vector of inputg and thel-dimensional row vector of param-
eters©°. As with the classic identification theory [7], we assume that
the available measured outpusatisfies they = 7 + = model, where
e = WN(0, ¢2) is an additive, independent and identically distributed
stationary noise.

Note thatr can be a nonlinear function= g(z) inthe external input
vectorz, independent fron®°: a polynomial expansion is therefore a
linear model in its coefficients.

We consider the general case in whigh is unknown and a model
family My: §(©) = Oz is selected for the parameter identification
phase [3]. We observe thai, can also be interpreted as the simplest
model of a nested linear neural network hierar®y M,; M; C
My C My --- C My --- (whereM,, stands for a linear network with a

Application robustness, defined as the ability to provide a containeghgle hidden layer of units and a bias term only on the linear output
degradation in performance when the algorithm solving the applicati6Buron).}M, can be intended as degenerate model (zero hidden units)
is perturbed inits structural parameters, has an immediate impact ongh®/1. For its nature, model{, can degenerate tbl, in force of the

design of a reliable circuit. In fact, given two applications &nd A

linear property by carrying out a multiplication between the weights

(with A; more robust than #), a physical device, and perturbationsassociated with the two layers.
having the same magnitude, then the experienced loss in performancenhe aim of the paper is to extend and complete results given in the

of A, is smaller than that of A

literature by:

The robustness of a computational flow subject to perturbations af- ,
fecting its parameters has been widely studied in the literature. Results
can be used within an analysis framework [1], [2] to validate an ar-
chitectural design (perturbations are applied to parameters and the loss
in performance is evaluated at the device output) or to provide design

providing a novel approach to evaluate the robustness of model
M, based on its generalization ability and not on its training error;
introducing off line transformations to improve the robustness
ability of Mo;

investigating the relationships between robustness improvement

guidelines for the subsequentimplementation (synthesis phase) [1], [3],

[4]. The analysis phase is generally embedded in the synthesis one to
estimate the robustness of a candidate solution; for its interest, we focu_? . .

. - he structure of the paper is as follows. To characterize the robust-

the attention on the analysis phase. ess ability ofd/; we introduce, in Section Il, an appropriate general-

Methods provided in the literature for robustness/sensitivil%a iy o Wel uce, | : y ppropriate g

. . tion-based performance loss function. Off-line transformations are
analyses of parameterized models are generally tailored to a spech - - ; .
then suggested in Section Ill to improve the robustnedgnfThe gain

computational model, i.e., linear/nonlinear, with known/unknowln obustness obtainable by redistributing the information content of
parameters while suitable hypotheses are envisioned to make . v 9 i
over suitable models d¥1 is also provided. An example showing

mathematics more amenable. When the coefficients of a linear mogél . ! S . -

are known the perturbation analysis is simple and the perturbation/p W to improve the robustness of a linear filter is finally given in Sec-
formance relationship can be easily derived in a closed form (e.aen V.

see [4]). Conversely, when the model becomes nonlinear, a Taylor

expansion for the model or the loss function is generally considerdtl A GENERALIZATION-BASED FIGURE OFMERIT FORROBUSTNESS
(e?H,esfsbhls]{gzse]ssn;n;[j)]/)s.is becomes more complex when the coefiln the following, we assume that parameter identification for model

cients of the model are unknown and need to be identified from a élgf _is based on a Least Mean Squared procedure (€.g., see [7]) mini-

ZN of N(input, output) pairs [7], [8]. In such a case, the presencénIZIng the training function
of noise-affected data and a limitédreflect on the model coefficients
which differ, in probability, from the unknown nominal ones. To ad-
dress this relevant case some authors assume that the identified coef-
ficients are the true ones while others opt for a statistical approach by
assuming convenient distributions for the involved entities [3], [4].

and topological redundancy obtainable by considering a more
complex modelM,, instead of model\,.

‘7\7
T = % ;(y —5(0, 2:))° (1)

which provides the estimat® of ©° having generalization perfor-

manceJy (é). A generic perturbatio® affecting® provides the

_ _ _ ~ perturbed vecto® + 60 of generalization performancg.;(© +60).

Wa"gf:gggﬁ:'rggnedceeévgg ;:sgzgéléégglge;lsgg ;:”“ary 29,2002. This papegorrect measure for the loss in performance is thereforg© +
The author is with Dip. Elettronica e Im;orr.nazion'e, Politecnico di Milanof%)) N J"“'(@) gnd not the training error dlscrepanty(@ + 66) -

Milan 20133, Italy. J:-(©) as considered by several authors. It should be noted that cross-

Publisher Item Identifier 10.1109/TCSI.2002.800840. validation techniques are useless in our analysis since they provide the

1057-7122/02$17.00 © 2002 IEEE



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 7, JULY 2002 1025

punctual loss estimaté\,.dl((:) +60) —. val(@)) but not the analytical Worst Case Perturbation Analysis
function describing the relationships between model, perturbation and]-he worst case perturbation occurs WHE = [56ux_ e, i.6.,

generalization p(_arformance loss. In at_:ldl_tlon_, cros'_s-valldatlon estimafgs perturbation is parallel to the eigenvector associated with the max-
cannot be taken into account when a limigdiis available. Such prob- .

lems can be overcome by following the analysis suggested in [9], [1|6rfum eigenvalud....(H) of the Hessian. From (6)
where a theory for estimating..;(©) valid also on a limited data set o

is presented. There, by suitably expanding with Taylari (©) and maxéJ = )\mx(H)|5(~)|2l ‘W_ 'H’
J.-(©) around®®, evaluating the expansion # and taking suitable 2N=p
averages, it is shown that the expected validation performancg)

is related to the expected training performance as

()

An index for measuring the robustness of modig| is therefore

(@)= 5el @) @ Boes )= Aol ) 5 3725

where expectation is taken over all possible setéVatraining pairs

ZN:p = rank(Jy-(©)) is an estimate of the effective number of i _

parameters used by the model to fit the data=(d for M, if the rank Average Case Perturbation Analysis

of the Hessian form associated with the training error is full). Likewise, we can easily compute the average case perturbation. If
In reality, we have only one training data set and we cannot take thve assume that the components of the perturbation vé€tare inde-

average required by (2). In such a case it can be shown [7], [9], [1®ndent and identically distributed with zero mean and variaijge

that we have that
A N + ]3 > o
Ja (@)= —= T, [O) + f(O 3 N4+ o A
: ( ) N—p" ( ) 187 ®) Esol8J] = % ;J_rﬁ tr (5@5@7.Jt; (@))
wheref(.)Ais an unknown fqnction. Fortunately, since we have to com- I N+p . d
pute J..1(© + §0) — J..(9), the dependency of(.) disappears in =3 N 5 rio Z A (8)

the robustness analysis and the variation in generalization performance

can be expressed as . L .
wheretr is the trace operator ang theith eigenvalue off . A crite-

N+p+op J (@) N+p ) rion for robustness can be derived by neglecting the dependency of the
. ~ < tr

N—p—ép N-—p perturbations

5T = Ju, (o + 5@)

6p models the possible variation in rank induced by the perturbation. .

By expanding with TaylotJ;-(© 4+ 60) around® and remembering 1 N+p Z/\'(H)
AT A ? *
: —-P =1

that the gradient is null (the training procedure ends in a minimum for Rav(H) = 2 N

Jir), we have thatl,. (6 + 60) = J.,.(0) + (1/2)607 J/ (6)s0,

which, inserted in the above, provides Note that expressions (7) and (8) decouple the performance loss in two
contributions: the first refers to the strength of the perturbation (i.e.,

(5) its magnitude or variance), the second depends only on the application
(the eigenvalues).

wheres? is an estimate of the noise variance (e.g., see [10]). We ob-As an example, consider a general-purpose digital implementation

serve that ifsp < 0 ands.J < 0, the perturbation improves the per-for M,. As a perturbation source we consider truncation which ne-

formance of the model. This comment can be related to the Princigh§cts bits of weight below”. Therefore, the maximum magnitude to

Component Pruning technique suggested in [11] and constitutes B§eHsed in (7) ig©[* = d2** while the variance associated with such

bases for other pruning techniques such as Optimal Brain Damage [2jerturbation is bounded b = 2”?/3 [1]. The synthesis phase

and Surgeon [13]. Since these perturbations improve the generalizatd use such information to dimension thegranting an acceptable

ability of the model they should be always considered at the model dpsS in performance as done in [1], [4].

timization level. Without loss of generality we can, therefore, assumeDifferently, the robustness indexes are affected by the application but

that model}, has been correctly dimensioned and, hence, that tHt€Y are not function of the perturbation magnitude (which is consid-

probability of having a continuous perturbation modifyifigis null. ~ ered fixed).

We, therefore, have thép = 0 and the (5) becomes

N+p+ébp &26p

N—-—p—06p N-—p—20p

57 = %5@%,;; (o) 50

Ill. ROBUSTNESSIMPROVEMENT AND STRUCTURAL REDUNDANCY

N+p ©)
N-p From the previous section, it is obvious that we would like to min-
o . " N o, imize Rmax and .y, to keep under control the impact of perturba-
After model optimization the Hessiall = Ji, = (1/N)3.,_, 2" tions onthe device performance; this can be accomplished with off-line

is definite positive by construction and hence, from (6), any perturbﬁénsformations and by exploiting structural redundancy.
tion introduces a loss in generalization performance. The facté, the

suggested by (6) constitutes an estimate of the generalization perfor-
mance loss when the linear model is subject by a generic perturbat’l%n
50. Lemma 1: Lossless Transformatioms transformation leading to

In perturbation analyses we can identify two interesting cases. Thero mean inputs does not worsen the worst case perturbation and al-
worst case perturbation, which addresses the evaluation of the mamys improves the average case perturbation.
imum amplification ofé.J, and the average case perturbation, which To prove the lemma we considéfy: © = [V, b;] where( is the
quantifies the average value &f . d 4+ 1 dimensional input vector having the nonnull mean vegtor

57 = %5@%,;; (0) 50

Off-Line Transformations to Improve the Robustness of Mafiel
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andb, is the model bias. Denote B = [6W, 6b] a generic contin- can be constructed by settifg = «, Vi = 1, k and
uous perturbation. From (6) we have thdt= (1/2)((N +p)/(N — ;, = W/ka,Vi =1, k.
P)(SWH:SW7T + 62b). The Hessian can be written as The detailed proof of the theorem is given in [19], here we pro-
vide only a sketch of it. In can be shown that of (6) can be trans-
1 . 1 X ‘ . formed in a canonical form in which the Hessian is split in matrices
He= >t = v > @+ p) @+ pe)’ either dependent of or §. It is then studied the effect of the pertur-
N Tl bations or¥ (point 1 of the Lemma) and (point 2 of the Lemma). In
1 X " " the former case, by boundiny/ associated withl/;, we obtain that
=5 D owxt pepe = Ho+ M Runax(H(My)) < 110]13 Bmax (H (Mo)): by requiring||9||. < 1 point

=1 1 one the lemma is proved.

Similarly, in the latter case, we obtain th&....(H(M:)) <
ﬁRmM(H(MO)) from which the thesis follows by requiring < 1.
To prove the third point of the lemma we constrain modél to
A(Hz) + Amax (M) > Mi(He) 2 Mi(Hz) + Amin (M) holds VI satisfy point 1 and 2, subject to the additional linear constraints
W = 66. Without loss of generality, by setting all coefficient of
with Awin(M) = 0 since M is a semidefinite positive matrix by § to o and considering the Moore—Penrose pseudoinvérsewe
construction and\max(M) = tr(3M). In particular, we have that have thatd = 6 T from which thed matrix is composed of
Amax(H¢) 2 Amax(He) from which Rumax (Hz) < Rmax(H¢) and  identical rows of valudV/ka. Finally, by requiring the spectral radius
the first part of the lemma is proved. 16]]2 = [W|/«V/k to be smaller than one we obtain the minimém
The average case perturbation always improves since the sumyginting the improvement in robustness.
eigenvalues equalizes the trace/df, which is always strictly posi-  The lemma shows that by spanning the hierarchy we can both im-
tive if Mdiffers from the zero matrix. The second part of the lemmgrove locally and globally the robustness of the model with respect to
follows by noting thattr(H¢) = tr(H.) + tr(M) > tr(H:) from  the worst case perturbation case by considering perturbations affecting
which Ravg (Hz) < Ravg(He). eitherd or 4;. Note that global robustness requires all neurons com-
The main consequence of the lemma is that a simple off-line trafjsgsing the linear neural network to be more robust than mafielin
formation, which transforms the input to be zero mean, improves tR@rticular, lemma 3 states that the improvement is achievable with an
robustness ofif. It is obvious that the transformation, which onlyarpitrary robustness value by acting @rand selecting an appropriate
modifies the bias term ai/y, does not change the generalization pefmgdel3,.. To show the dependency in from the proof of Lemma 3
formance. we have thaiR .. (H (M) < a® Rmax(H(Moy)) for perturbations
Lemma 2: Lossy TransformationA tolerated pruning transforma- affectingé; and Runax (H(My)) < (|[W]?/ka®) Ruax (H (My)) for
tion improves the average case perturbation. perturbations affecting. We should compare the gain in robustngss
If we note that an extended pruning technique implieennections obtained by considering modéf, instead of modeM, with the in-
removal, the HessiaH . of orderd becomes the reduced Hess#n »  crease in model complexity. From the above two relationships we have
of orderd—%. For its natureH,, x C H. and, therefore, by invoking that, once suitably selectét] R (H (M) < 1Ruax(H(Mo))
the interlacing-Cauchy theorem [15], which states that the eigenvalysids for a generic perturbation affecting a generic linear neuron of
of H, \ are suitably interleaved with those Hf;, the thesis follows. 37, with n = max(a?, [W[*>/ka?). Computational complexity”,
here defined as the number of parameters of the model (and hence re-
B. Structural Redundancy Techniques to Improve the Robustness &fted to the number of multiplications and additions to be implemented)
Model M, increases from thd weights of M, to then = k(d + 1) of M.

The section investigates the possibility of improving the robustne5E°M lemma 3u > (|W */a®)(d + 1) and, therefore(’(My) >
9 P y P 9 “12/a®)((d 4 1)/d)C(M,). Both the robustness gain and model

of M, by considering a structural redundancy scheme which red W lexi | dratically with?
tributes the information content of the application over more compl&)?mp exity scale quadratically withr.

models. The class of models we consider for structural redundancy i fr(’)\lm theﬂ:h:aory pow;}t of Vt'eW’ the resgrllt IS surel;: atpprel(:lablte ?ytlt-
the class of linear neural network4. By neglecting the bias contribu- Sell. Nevertheless, we have to compare the computational cost of struc-

tion term, thekth model ofM is characterized byl + )k weight and, tural redundancy with the one requested to implement a classic fault

hence, with respect t¢/, (d weights), it possesses a potential Struct_ol(;erance rfebdu_ndancy e(ljr;:“f}ltecturlz. In Sl_JCh a casel, b_y negleﬁtlng low
tural redundancy. Denote I#ythe weight vector between hidden unitgC"@er contributions, modelf; would require a complexity roug ly

and output unit and witH; the generic weight vector between thke tl:nes that OIfMO_-kWG COU'(? lhave (;Jse: |nsteacrj1 theuntl)ts Mdo to im- |'
hidden unit and the input ones, plement a classik-ary modular redundancy scheme based on a replica

Lemma 3: Sufficient Conditions for Structural Redundancy: mechanism forM, and a voting unit at the end. Such a solution sup-
. . . . ports ak — 1 error detection and correction bf— 2 errors [16], [17];
» Local improvement in robustnesa generic model/, is lo-

" b hai/. with X bati here errors are induced by perturbations affecting the redundant units.
cally more ro ust than 0 with respect to generic perturbations,ysh this schema we can provide a correct result whereas information
of magnitude 60| affecting:

= 2 distribution over mode};. always introduces an error (even if it can be
1) thed coefficients if[|f | < 1; made arbitrarily small). After these observations, Lemma 3 implicitly
2) thed; coefficients iff); < 1. states that the improvement in robustness with spatial redundancy over
The robustness indeR,.. improves when||f|l» and#; get M is too costly from the performance/computational point of view.
closer to zero.

 Global improvement in robustness
. . , . IV. CASE StubY: CONSTRUCTING AROBUST CONVOLUTION MODULE
3) Given modelM, of weightsT¥ and chosen an arbitrary

valuea < 1, any modeld; with & > |W|?/a? grants In this section, we consider the linear “peak detection” filter
Rax(H(Myg)) < Rumax(H(My)) for any perturbation y = 0.25¢(¢t — 2) + 1.25¢(t — 1) 4+ 0.25¢(¢) — 1. N = 500
affecting the weights of generic linear neuron. Modé&l  inputs have been extracted from a nonzero mean Gaussian

with M = H‘cu?- By invoking the Weyl theorem [15] we have that
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distribution ¢ N(4, 0.04). The eigenvalues of the Hes-
sian are eigen(H.) [3.7868, 3.7278, 52.9061] and then
Riax(H¢) = 26.7724 and Rave (H¢) = 30.5751.

By applying Lemma 1, and hence transformation= « + 4, we

have zero mean inputs [i.er, = N(0, 0.04)] and the new filter
becomey = 0.25x(t — 2) + 1.25z(¢t — 1) + 0.25z2(¢) + 6. The
new eigenvalues areigen(H,) = [3.7834, 3.7259, 3.9388] with

Ruax(H,) = 1.9932 and Rave (H,) = 5.7931. It is immediate to

observe that the transformation significantly reduced the impact of the

worst and the average perturbation cases.
To experimentally test the impact of physical perturbationsgQin

we represented the coefficients of the filter in a fixed point truncation-
based notation. We then applied perturbations affecting a randoml
chosen bit for each coefficient of the filter (there are therefore 3 si-
multaneous faults within the filter). We then tested the impact of errors
on Jy. before and after the transformation on the same fault set. Thel®l

histograms of the induced variation.fp,; are given in Fig. 1(a) for the
original filter and in Fig. 1(b) for the transformed one. We immediately

see that after the transformation, the new filter is significantly more ro{10]

bust since the effect of the generalization abillty; is reduced.

V. CONCLUSIONS

The paper investigates the robustness issue in linear models whoBél
coefficients have been identified from a set of measured data. It is
shown that the difficult problem of considering the generalization errof4]
as loss function can be tackled by following the statistical approach
leading to the network information criterion and final prediction error [15]
criteria. Off-line transformations can be derived which improve the ro-
bustness of the computation. An additional gain in robustness can 6%6]
achieved by considering more complex linear models implementing 17
sort of structurally redundancy. Despite the achievable gain in robust-
ness, the computational complexity is not justified when compared wittt18]

[19]

performance obtainable by a classiary modular redundancy scheme
requiring the same resources.
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