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Abstract—Checking railway status is critical to guarantee
high operating safety, proper maintenance schedule, and low
maintenance and operating costs. This operation consists of the
analysis of the rail profile and level as well as overall geometry and
ondulation. Traditional detection systems are based on mechanical
devices in contact with the track. Innovative approaches are based
on laser scanning and image analysis. This paper presents an
efficient composite technique for track profile extraction with
real-time image processing. High throughput is obtained by algo-
rithmic prefiltering to restrict the image area containing the track
profile, while high accuracy is achieved by neural reconstruction
of the profile itself.

Index Terms—Image processing, laser-based measurement,
neural networks, real-time measurement.

I. INTRODUCTION

SAFETY in railways and tramways is one of the key issues of
public transportation companies. The state of the tracks is

relevant in this perspective, in particular when high-speed trains
are envisioned. Frequent monitoring of the tracks is therefore
critical to plan proper and cost-effective maintenance. Detec-
tion of wear and deformation of tracks at an early stage allows
for better scheduling of the maintenance, avoiding the need of
immediate action when dangerous conditions are observed. Ad-
vance maintenance planning reduces also costs since the limited
human and equipment resources can be better used. Besides, ac-
curate maintenance decreases the acoustic pollution due to bad
coupling between wheel and track: this is relevant especially
within the town borders. An approach based on genetic tech-
niques was proposed to plan the maintenance of railway tracks
[1]. A multirobot system was realized to perform simple auto-
matic maintenance actions on tracks (e.g., detecting and loos-
ening of bolts in sleepers, and feeding and fastening fastener
assembly) [2].

As real-time inspection at macroscopic level is concerned, the
railway track geometry was measured by detecting vertical and
horizontal accelerations, vertical irregularities of the rails, and
cant (real altitude difference between the two rail running sur-
faces) [3]. Similarly, a compensated accelerometer was used to
observe the superelevation (crosslevel) on curves, by analyzing
the deviation of the actual geometry from the ideal one due to
repeated loading on the ballast [4]. Unfortunately, these inertial
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approaches do not permit any direct and detailed monitoring of
the surface conditions of the railways track in order to observe
local wear.

To detect the track profile by means of tactile techniques me-
chanical devices in contact with the track are traditionally used.
The main characteristics of the profile are observed indirectly
through the analysis of the position of suited leverages. This
approach has several practical problems. Accuracy and com-
pleteness of profile reconstruction may be not accurate since
the contact point between the mechanical sensor and the track
may be large and restricted to a specific area of the track. Be-
sides, components are subject to wear and difficulties in passing
joint point areas. On the other hand, acceptable operation quality
needs dedicated rail carriages running at low speed. The above
characteristics induce high costs of acquisition and operation
of the track monitoring system. Moreover, only part of the track
parameters (namely, geometry and ondulation) can be observed,
while the most important ones (namely, profile and level of the
wear of the track) cannot be measured.

An experimental system available on the market was realized
by using laser technologies to replace the tactile sensors. Rele-
vance of this technique is wear avoidance due to lack of physical
contact between moving components. This solution detects only
the track surface in eight points with an insufficient accuracy for
early global detection of incipient deformations. Besides, detec-
tion of complex profiles (e.g., grooved track) is not allowed and
a mechanical truing system is required to align lasers.

We considered an innovative approach based on image anal-
ysis and processing to reconstruct the whole track profile. The
image is generated by lighting the track with a laser beam and
acquired by a CCD camera. Since no contact between the moni-
toring system and the tracks is required, no wear occurs and the
speed of the rail carriage can be higher. Carriage speed is lim-
ited only by the real-time processing ability of the monitoring
system. Due to the amount of information to be processed, a
high-performance architecture is needed for real-time analysis
since it is not possible to store all images and process them off
line. Pipelining and parallelism allow higher performance when
very high operating speed is required. Differences between re-
constructed and reference profiles point out the track defor-
mations. High-level image analysis avoids the need for contin-
uous and accurate alignment of the monitoring system with the
track since the image processing method can be designed to be
self-aligning. Some companies performed partial experiments
similar to ours, but none was reported to be satisfactory.

In this paper, we present the image processing system and
the composite technique for real-time profile analysis. The
composite approach consists of an algorithmic preprocessing to
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Fig. 1. Detection system.

identify the strip—in the whole image—in which the track pro-
file lays and a neural processing for fine profile reconstruction
within such a strip. The system was tested on still images.

II. THE COMPOSITEDETECTION SYSTEM

The detection system consists of a laser source, whose beam
is collimated by a suited optic lens into a light plane, two

-pixel CCD cameras for complete optimum observation of
the track, a digital processing system per camera, and a super-
vision system (Fig. 1).

The laser beam focused by the cylindrical lens as a thin plane
enlightens the upper part of the railway track orthogonally to the
track surface. The intersection of the plane is therefore the track
profile (in the laser beam plane it is a two-dimensional line)
which is observed by the CCD cameras. Each digital processing
system performs real-time profile filtering and extraction (in the
CCD camera geometrical coordinates) by using a composite ap-
proach from images of the corresponding CCD camera. The su-
pervision system collects the partial views of the track, recon-
structs the whole profile in the real-world geometrical coordi-
nates, identifies and stores the deformed profiles. Real-time op-
eration is needed since 200 track sections per second must be
captured and processed to guarantee a sufficient accuracy of de-
formation localization. The resulting bit-rate is 1.7 Gbit/s. The
detection system is conceived for on-board operation on a reg-
ular train, even if—at the moment—it was tested with still car-
riages only.

Each CCD camera of the detection system should ideally pro-
duce an image such as the one shown in Fig. 2(a), in which
the thickness of the laser plane is infinitesimal and no noise is
present. In the real case identification of the profile is made com-
plex by the presence of noise and environmental disturbances
that modify the ideal profile. Real images (e.g., Fig. 2(b) and
Fig.3) are affected by environmental light, multiple reflections,
track oxidation, greasy track, speckle effect due to track rough-
ness, noninfinitesimal thickness of the laser plane scanning the
track, optic aberrations, CCD sensor saturation, and image dis-
tortions due to vibrations.

The roughly approximate position of the profile in the image
is knowna priori since the laser and the cameras are still with
the rail carriage. Besides, the profile is approximately lying in
a linear direction, i.e., cutting the image in stripes. Only one
point of the profile belongs to each stripe. This characteristic
allows for parallel processing since each stripe can be analyzed
independently to reach 10 ms image processing time without
affecting the profile accuracy.

Fig. 2. CCD images: (a) ideal and (b) real.

In each column of the image localizing the position of the
track profile means to find the position of the maximum laser
reflection intensity. In the ideal case the intensity distribution
along the column is Gaussian. Localizing the maximum implies
therefore detecting the position of the expected Gaussian profile
with the maximum likelihood.

To tackle this application, we tested both traditional filtering
techniques with minimum-square approximation and neural
network techniques. In the first case, results were quite poor due
to the inability of capturing all nonlinearities and distortions. In
the second case, the number of pixels to be processed in each
column and the variety of the possible maximum light profile
positions led to large inaccurate networks, that are also difficult
to train.

It is worth noting that highly approximate localization of the
area of interest in each image is quite trivial for the human ob-
server, even without experience (see Figs. 2 and 3). Track profile
localization does not need to take into account all details in the
whole column, but only the area around the maximum lighting.
Experiments have shown that no information out of a 40-pixel
strip centered approximately on the maximum lighting is neces-
sary for accurate reconstruction of the track profile. Besides, this
area of interest corresponds approximately to the zone around
the highest-intensity Gaussian profile in the column. Such area
can be easily found by identifying the maximum correlation of
the light profile with the Gaussian reference: correlation can be
effectively used. Finer localization of the maximum must deal
with all nonlinearities presented above, which are difficult to be
captured algorithmically while they are easily described by ex-
amples. In the literature, neural networks were proved effective
for this kind of task.

Our approach is thereforecompositesince it exploits the best
features and performance of both of these techniques within
their individual application limits. Algorithmic filtering by
correlation is used to center the attention on the 40-pixel strip
[Fig. 4(a)], while the neural network performs the fine track
profile localization at subpixel accuracy [Fig. 4(b)].

III. T HE ALGORITHMIC PREFILTERING

Identification of the region containing the track profile drawn
by laser reflection within an image column is obtained by con-
volving the pixel intensity with a Gaussian distribution [5]. The
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Fig. 3. Typical disturbances: (a) saturation, (b) low intensity, and (c)
environmental reflections. The observed images are on the left, typical light
intensities along image columns are on the right.

convolution is repeated by positioning the maximum value of
the Gaussian profile in each pixel of the column. The maximum
value of the convolution corresponds to the position in which
the light intensity is more similar to the expected Gaussian dis-
tribution. To reduce the computational complexity the convolu-
tion can be performed every few pixel positions instead of every
pixel.

Accuracy of the identification of the area of interest may
be reduced by the presence of noise in the input image. Since
the laser reflection has usually intensity definitely greater than
noise, the Gaussian profile is likely understandable. Problems
are actually due to modification in the Gaussian amplitude (re-
lated inaccuracies in the lens and focusing as well as to the
real thickness of the laser plane), to track reflectivity variations
leading to CCD saturation, and to system oscillations due to rail
carriage motion. External sources of errors are the possible re-
flections of environmental lights. In Fig. 5, some typical light
distributions are shown.

The column analysis may have difficulties to discriminate
a Gaussian distribution from a saturation border. An effective
solution consists of applying the convolution to the derivative
both of the light intensity distribution and the Gaussian function.
Even in the presence of strong external light leading to satura-
tion, this approach maximizes the correlation in correspondence
of the Gaussian laser reflection only (Fig. 6). This approach is
successful also if the Gaussian profile is very near to the satu-
ration region.

IV. THE NEURAL PROFILE RECONSTRUCTION

The fine profile reconstruction is obtained by a more accurate
analysis of the area of interest identified by the algorithmic pre-
filtering. In each image column the neural approach identifies
the position of the maximum of the Gaussian distribution in the
40-pixel strip by minimizing the difference between the theoret-
ical Gaussian and the actual profiles. Separating the prefiltering
phase from the fine neural positioning allows for separating the
accuracy of reconstruction in the neural computation from the
accuracy in windowing the area of interest. The profile is in fact
reconstructed by adding the very accurate distance (measured
with sub-pixel accuracy) of the maximum value from the bottom
of the analyzed column in the strip to the distance (measured in
pixels) of the bottom itself from the base of the whole image.
The overall accuracy is therefore related only to the accuracy of
the neural reconstruction. The accuracy of the prefiltering (typ-
ically about two pixels in our approach) is useful to center the
Gaussian profile approximately in the middle of the strip so that
the neural reconstruction can focus its abilities mainly on the
central area of the strip to achieve very high accuracy efficiently.

The neural network that was shown effective for the envi-
sioned application is the Radial Basis Function (RBF) network
[6]. This kind of network is well suited to interpolate multi-vari-
able functions, i.e., to approximate filtering functions by ex-
ploiting its generalization ability [7], [8]. Restoration of nonlin-
early-degraded images by means of RBF networks was shown
feasible in [9].

An RBF network has a three-layered feed-forward topology.
Input neurons are used to distribute the input values to all sub-
sequent neurons. Each hidden neuron generates its output by
applying a radial function (typically a Gaussian function) to the
difference between the input vector and the centers’ vector. The
output neuron computes the weighted sum of the hidden neu-
rons’ outputs, possibly with a threshold. The number of hidden
neurons and the centers can be determined from the analysis of
the data available for training. A minimum-square algorithm is
used to identify the weights.

In our application, the input layer is composed of 40 inputs
corresponding to the 40 pixels of the image strip. Each input
value is the intensity of the light collected by the corresponding
CCD pixel. Experimentally, six Gaussian neurons were shown
sufficient for the hidden layer to achieve the desired accuracy.
One linear output neuron is used. To achieve an error goal equal
to 10 , the training set was composed of 50 input vectors. The
training set must contain enough examples to allow the net-
work to capture the desired behavior. We do not need to use all
columns in an image since the light reflection changes gradually
along the track profile. The generalization ability allows the net-
work to operate correctly even for reflections never previously
seen. Conversely, if we sample the columns only in one part of
the image, reconstruction will be accurate only in the portion
learned during training and may become very poor elsewhere
[Fig. 7(a) and (b)]. If samples are uniformly taken along the pro-
file, the network achieves a uniformly high accuracy [Fig. 7(c)]:
the standard deviation is 0.1 pixel.

The robustness of the neural reconstruction with respect to
variation of the reflection is critical for high accuracy. For ex-
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Fig. 4. Composite processing approach: (a) algorithmic filtering, and (b) neural processing.

Fig. 5. Algorithmic prefiltering: (a) the image, (b) the intensity distribution
in columns A (typical) and B (with saturation), and (c) the convolution values
along these columns.

ample, as shown in Fig. 7, 40% variation of the reflection width
makes the accuracy jump from 0.1 to over 2 pixels. To create
a robust network, we studied the effects of varying the applica-
tion parameters (e.g., shape of the reflection, saturation index,
and noise) on synthetic images. Fig. 8 reports the percentage
ability of successful identification of the profile with the spec-
ified accuracy. In the absence of noise, the deformation of the
light width that the network is able to tolerate even if not present
in the training set ranges between 0.8 and 1.4, i.e., the network
tolerates better width enlargement. The behavior is similar also
in the presence of noise. To balance this behavior, we suggest
to introduce some reflections with width slightly smaller (e.g.,
0.9) than the expected one in the training set to enhance the gen-
eralization ability symmetrically.

Adding noise to the training set decreases the generalization
ability of the network. The network recognizes well only the
vectors very similar to the ones used in training. To deal with
noise and accuracy contemporaneously, the training set must be
created in a different way.

Fig. 6. Derivative prefiltering: the convolution values along the columns.

Fig. 7. Learning error: (a) the training image, (b) nonuniform sampling, and
(c) uniform sampling.

To harden the network with respect to variation of the re-
flection shape, for each expected position of the profile we in-
clude several sample vectors corresponding to Gaussian pro-
files having different widths. Since the nonsaturated laser reflec-
tion is 5 pixels wide, we added reflections 4-pixels and 6-pixels
wide. To avoid unnecessary generation of large networks, the
training set is created without changing the total number of vec-
tors: we uniformly extract samples from the set composed of
profiles having all considered widths. Fig. 9 shows that this
approach enlarges the correct recognition region: from 4 to 6
pixels. The correct recognition is now at least 90% even in the
presence of small noise. The network is also able to identify
profiles with deformation index equal to 1.5, i.e., a Gaussian re-
flection profile 7.5-pixel wide even if it was never seen. This
behavior holds for a noise deviation up to four pixels, which is
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Fig. 8. Percentage of successful profile identification with an error less than
(a) 0.5 and (b) 1 pixel. The ratio� =� measures the variation of the
light width in the real case with respect to the training examples.

Fig. 9. Hardening the training set for laser reflection width.

relevant even in the real images. Higher generalization ability
and noise immunity without increasing (sometimes even de-
creasing) the number of neurons can be achieved with the ap-
proach described above by increasing the number of different
widths. The effectiveness of this constructive technique for the
training set can be also observed in Fig. 10 as higher insensi-
tivity to laser width variation and to noise is concerned.

The generalization ability and the accuracy are also affected
by the spread of the radial function, i.e., of the width at half
height. In Fig. 11, the error deviation and the number of neu-
rons are reported for different values of spread, in the case of
40 noise-free validation vectors applied at the end of learning.
The first relative minimum value of the error deviation is at 180,

Fig. 10. Successful identification with error<0.5 pixel by selecting widths
every (a) 0.5 and (b) 0.1 pixels in the range of 4–5 pixels.

Fig. 11. Generalization ability versus spread: (a) the error deviation and (b)
the number of neurons required to perform identification.

while the absolute minimum is at 230. Even if they are not so dif-
ferent for noise-free input vectors, the error deviation obtained
in the case of noisy inputs having 5-pixel deviation becomes
0.198 and 0.204 pixel, respectively. Therefore, the maximum
generalization does not coincide with the absolute minimum
error deviation versus. the spread. We experimentally observed
that the optimum value corresponds to the minimum reached
without discontinuities (i.e., 180 in the example).

V. CONCLUSION

An innovative approach to track profile measurement is
presented. A real-time image-processing-based technique was
adopted to reconstruct and measure the profile by analyzing a
laser-scanned CCD-camera image. A prototype of the detection
technology was tested for more than one year in the Milan un-
derground, while the reconstruction technique was verified on
simulated and real images. An accuracy of the same magnitude
of the track roughness was achieved with a still monitoring
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system: typical resolution is 25m. Similar results are also
expected for the system on board of a moving rail carriage.
Simulations were performed to mimic light reflections and the
damped small low-frequency oscillations that are typical of
the moving carriages: results are still attractive and show the
efficiency and the effectiveness of the proposed approach. A
more extensive on-field experimentation is required to verify
the real effects and interference of external light conditions,
reflection, and vibrations as well as to certify the accuracy of
the measurement system.
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