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Neural Modeling of Dynamic Systems
with Nonmeasurable State Variables
Cesare Alippi,Senior Member, IEEE,and Vincenzo Piuri,Senior Member, IEEE

Abstract—The paper studies the ability possessed by recurrent
neural networks to model dynamic systems when some rele-
vant state variables are not measurable. Neural architectures
based on virtual states—which naturally arise from a space
state representation—are introduced and compared with the
more traditional neural output error ones. Despite the evident
potential model ability possessed by virtual state architectures
we experimented that their performances strongly depend on the
training efficiency. A novel validation criterion for neural output
error architectures is suggested which allows to assess the neural
network not only in terms of its approximation accuracy but also
with respect to stability issues.

Index Terms—Dynamic systems, recurrent neural networks,
stability, training.

I. INTRODUCTION

T HE development of a black-box model for a dynamic
system is an assessed procedure to be envisaged when-

ever the equations ruling the system are unknown, inadequate
to explain the process behavior or computationally intractable.
To this end, linear system identification techniques [1] have
been proved to be valuable and theory-supported tools to solve
the problem if the system is linear or the interest is around
a working point. Unfortunately, linear models suffer from
inaccuracy if the system to be approximated is significantly
nonlinear and evolves through different working points.

To overcome such limits, recurrent neural networks [2]
have been suggested as alternative solutions whose validity
has been shown in a wide range of applications. In the
instrumentation and measurement fields, neural networks have
been successfully used to implement (e.g., see [3]), enhance
(e.g., see [4]), and calibrate (e.g., see [5]) both real and virtual
sensors (e.g., see [6]), process signals and images (e.g., see
[7]), predict, control, and model plants (e.g., see [8]).

The approximating ability of such neural networks depends
on a priori information about the system, the number of
available data, the influence of noise on data and, mainly,
on their structure (the choice for a wrong neural model may,
in fact, drastically impair its approximating accuracy).

Inputs and outputs of the system (here accounting for both
external outputs and states) are usually implicitly supposed to
be measurable which ends to be a reasonable hypothesis in
many applications. When this assumption holds, the network
weights can be easily obtained by minimizing a discrepancy
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function, e.g., the mean squared error function, provided that
an efficient training algorithm [9] has been chosen.

Conversely, when some (if not all) the state variables are
nonmeasurable, we should identify the neural structure to be
used and the most appropriate training procedure.

Sometimes, the presence of nonmeasurable states can be
trivialized if there it exists an equivalent input–output repre-
sentation for the equations ruling the process (mathematically
the dependence on the nonmeasurable states can be reduced
to a direct dependency on the output dynamic); for instance,
this nicely happens when all equations ruling the process
are linear. In such a case, the problem can be solved by
considering the straightforward input–output nonlinear output
error—NOE—representation instead of the more complex
state-space one [10]. More realistically, we do not know
whether the contribution provided by nonmeasurable states
can be reduced to an input–output representation or not and,
therefore, we should consider different neural structures (e.g.,
NOE, virtual states, etc.), identify a good neural family (e.g.,
determine the number of layers and neurons per layer) and,
finally, the best model within such a family (i.e., configure
the weights). Hence, the search for an acceptable neural
network is an extremely complex and time consuming pro-
cedure; we would like to simplify it by eliminating the least
efficient/interesting neural topologies from the candidate ones.
This operation should be intended as follows. If a neural
structure is classified as not efficient with respect to a class
of applications it does not mean that it is useless (it could
be extremely appropriate for solving a specific problem) but
the performances for a generic application are modest. We
experienced that several neural structures show this behavior
(e.g., the memory neuron networks [2]). These networks either
provide really excellent performance on specific applications
or, more frequently, modest ones. This should be somehow
related to the approximation ability of such network, i.e.,
the property to model a generic dynamic system, and the
effectiveness of the train procedure.

In this paper, we study and compare the features of two
neural structures to approximate dynamic systems in order
to rank their effectiveness when some state variables are
nonmeasurable. The reference architecture is the output error
neural network NOE [2] in which the network outputs are
feedback to constitute additional inputs and the concept of
state. Such networks are extremely interesting for their proven
approximation ability within a wide range of applications.

As challenging candidates we suggest neural architectures
based on the space-state representation which extends the ones
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presented in the literature [10] by introducing virtual neurons.
Virtual neurons are output neurons which do not directly
contribute to generate the network output but are feedback and
delayed to constitute additional inputs. This ends in additional
states for the network, an appreciable feature for dealing with
unknown dynamics.

In the comparison we will not consider the wide class
of fully recurrent models since it has been shown that any
recurrent network can be transformed into a canonical form
realizable with static and NOE neural networks [10].

The structure of the paper is as follows. Section II formal-
izes the problems of learning from examples and introduces
the NARX and the NOE neural models. Section III addresses
aspects related to the modeling of dynamic systems when
some (if not all) dynamic states are not measurable and
introduces the virtual neuron networks. Section IV provides
a stability criterion for NOE models. Section V presents a
comparison among performances provided by different neural
model structures. Two experiments are presented addressing a
linear model and a nonlinear one, respectively. In particular,
the simplified but strongly nonlinear model refers to a drum-
type boiler, characterized by a dynamic associated with a
nonmeasurable state.

II. NARX AND NOE NEURAL STRUCTURES

For sake of simplicity, let us focus the attention on a
MISO system (multiple inputs single output), which receives
the -dimensional input vector and produces the one-
dimensional output , affected by an additive i.i.d. noise
taking into account both the approximating model deficiencies
and the instrumentation noise.

In the following, we assume that the system is both observ-
able and controllable.

A specific model approximating the dynamic system will be
indicated as where is the -dimensional vec-
tor of parameters containing weights and biases;is obtained
by minimizing the mean square error—MSE—function

(1)

evaluated over the set which contains input–output
pairs.

The relationship between the inputs and the output of
the system can be captured by considering theregressor
vector , which contains a limited time-window of actual and
past inputs, outputs, and—possibly—predicted outputs. In this
paper, we consider model structures in which the
function is a regression-type neural network, characterized
by inputs, nonlinear hidden units and a single effective
linear output [8]. The presence of a dynamic is modeled by
delay elements (ortime lags), which may affect both inputs
(time history on external inputs) and output (hence allowing
to deal with the system dynamics).

Several neural model structures have been suggested in the
literature (e.g., see [2] for a review), which basically differ in
the regressor vector.

In the following, we will focus the attention on NARX,
NOE, and virtual neurons model structures. Briefly, the NARX
structure considers both past inputs and outputs of the system
to infer , we have

and, consequently, the plant needs to be
accessible on line to provide the required. Differently,
the NOE structure processes only past inputs and predicted
outputs, i.e.,

; it is not required the presence of any
coming from the plant during its operational phase: model
and plant are separate entities.

Since static regression-type neural networks are universal
static function approximators [11] we implemented them as
core of the envisioned model structures. The static assump-
tion, which guarantees the universal approximation property,
may be relaxed to deal with dynamic systems: up to now,
the approximation ability has been proven to hold also for
dynamic systems under the hypothesis that there is an acyclic
computational graph from to . Note that NOE models do
not satisfy this hypothesis since their regressor vectors contains
past predicted values.

III. M ODELING DYNAMIC SYSTEMS

HAVING NONMEASURABLE VARIABLES

For ease of notation, but without any loss in generality, we
can assume that the deterministic behavior of the process to
be modeled is ruled by the system of differential equations

(2)

where is the measurable state (which also coincides with
the output), and is an internal state (the extension to several
states is trivial and does not modify the results here achieved).

A discrete realization of (2) can be easily obtained (e.g., by
applying the Euler explicit discretization) and leads to consider

(3)

Even if some noise affects and corrupts the generation of
and over time, (3) is representative of many real processes
and represents a good starting point for generating new time
discrete model structures. Relationships concerning distur-
bances will be captured by the neural model during the training
phase directly from the available data set . Of course,
introduction of new models requires further validation and
experimental comparison with already existing ones. This
allows either to prove their efficacy or suggests the neural
structure not to be considered, hence simplifying the search
space.

A. System Modeling with NARX-Based Neural Topologies

If the internal state is measurable, we could simply con-
sider a neural network approximating each nonlinear function

and of system (3), with the regressor vector
. In this case, identification of the best neural network

would be a reasonably easy task.
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Fig. 1. Black-box realization of (3).

Conversely, if the internal stateis not measurable, genera-
tion of a model approximating the (3) becomes more difficult.
As we already mentioned, if it is possible to manipulate the
system (2) and reduce it to an equivalent explicit nonlinear
differential equation of the type

(4)

then the approximating problem can be solved by considering
a NARX type neural network, e.g., with

.

B. System Modeling with Virtual States Neural Topologies

If the state is not measurable we can introduce a new
neural structure resembling the mathematical description of
(3). The solution is extremely natural and intuitive and leads
to the introduction of avirtual nonmeasurable internal state.
Such a state is not necessarily an estimate of the real internal
state , even if ideally it could be but,a priori, and
are not even correlated. The virtual stateis a state variable
which simply provides the dynamic necessary to give enough
flexibility to the model. The new network structure receives
the regressor vector and, with respect to system
(3), it can be represented as in Fig. 1, where we assume that
the black rectangle represents a time delay. It is immediate the
natural derivation of the neural structure from system (3) and
hence its potential interest. The virtual states neural structure
extends [10] where it is assumed a measurable.

Note that the initial condition for is unknown: during
training it is required the network also to learn how to become
stable. This increases the difficulty of training and it might
impair accuracy. We will experimentally show in Section IV
that, even if the virtual states network naturally arises from
(3), its training phase may be difficult. This is due to the
presence of virtual states that, by providing additional degrees
of freedom, increase the probability of ending in a suboptimal
minimum.

C. System Modeling with NOE-Based Neural Topologies

The model approximation of systems having nonmeasurable
states becomes particularly difficult when the neural model
must approximate the process or the plant without having
access to it on-line during its operational phase. This require-
ment is of particular interest in all those applications (e.g.,

what-if applications [12]) which require a model evolving
independently from the plant.

To afford this case, we can consider two approaches. The
first solution, following the guidelines given above, takes into
account suitably delayed virtual outputs. Some a priori
information about the process could be exploited to guide
the model definition (e.g., the number of nonmeasurable
states may be approximately deduced by relying on physical-
based equations). If some states are measurable, we could
envisage mixed neural structures which include both virtual
and measurable states: if possesses its own dynamic, a
feedback on (as in the NOE model) is necessary.

The second solution is to construct a NOE model to model
the system without introducing any nonmeasurable states. This
solution is particularly appealing since we do not require any
a priori information. Training is carried out by using recurrent
learning algorithms similar to the ones necessary for the virtual
states. In this case there are no problems related to the state
initialization since, at the beginning, the estimate valuesare
the values themselves.

IV. A STABILITY CRITERION FOR NOE MODELS

Once training has been completed one simply observes
performances and discovers whether the model approximates
the system with enough accuracy or not but, in general, nothing
can be said about its stability. In the following, we provide
a stability criterion for NOE neural networks. The criterion
derives by considering the relationships between NARX and
NOE models.

It is obvious that, if , the NOE model
coincides with the NARX model: the real output feedback at
the network input can be substituted by its estimate, achieving
a situation similar to the one of (3). It is experimentally
well known that, due to the noise presence and the training
inefficiencies, this is difficult to obtain. In the worst case, if
the training procedure has not been perfected or the model is
inaccurate (e.g., because of a wrong choice of), model
and system might even diverge. Nevertheless, it is more likely
that the training procedure provides a good NOE model such
that error over time is small.

Differently from linear models, the presence of a saturating
nonlinear function in the hidden units (e.g., hyperbolic tangent)
cannot introduce a continuous increase/decrease of the output
if the system is unstable: if the model trajectory diverges
from the system one is within a cylindrical neighborhood
centered onto the system trajectory). In fact, the absolute
difference between the two trajectories is always structurally
bounded by a constant . If we consider a hyperbolic
tangent function , such a
constant is equal to the sum of the absolute values of the
bias and the weights feeding the output neuron, i.e.,

.
Under the assumption that the system to be approximated

is stable, the performance evolution over time can be studied
by analyzing the discrepancy between the
system output [supposed to be ruled by (3)] and the NOE
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model (obtained after training)

System:

NOE:
(4)

with the same initial conditions . The
evolution over time of the error can be obtained by considering
the Taylor expansion around the true regressor vectorof the
NOE model

(5)

and by subtracting the equation ruling the system, thus ob-
taining

(6)
Let be the maximum time lag associated with the output,
and the gradient w.r.t. the time lagged
prediction . The vector can be interpreted as
the error vector

. Equation (6) becomes

(7)

which represents the error dynamic over time. If we assume
a small discrepancy between the real model and the approxi-
mated one, i.e., each component of the column vector
is sufficiently small we can discard the term. By indicating
with the forcing input , (7) becomes the
time discrete ordinary differential equation

(8)

It should be noted that the gradients are evaluated over
and not over . Due to the universal approximation property,
being a neural NARX approximation of , the
term may become reasonably small, i.e., the
obtained model possesses good prediction abilities when fed
with data coming from the system.

The prediction error is composed of two contributions,
deriving from the noise and the systematic errordue to the
training inefficiency, the limited data set, and the model bias.

The NOE model is close to the process output, being stable
at that instant of time, only if the eigenvalues associated with
(8) lie within the unary circle.

If the system is error free (i.e., ) and we excite system
and model with a step function, the error tends to zero only if
the eigenvalues are within the unary circle at the steady state.
We experimentally observed that there is an error at the steady
state even when eigenvalues lie within the unary circle. In our
opinion, this is due to the presence of a nonnull forcing term

, namely, the NOE model has a nonnull prediction error
even when it receives the true regressor vector. In such a case,
the error at the steady state satisfies the relationship

(9)

We note that the eigenvalues associated with (8) depend on
the working point along the trajectory and, with respect to a

Fig. 2. Linear system.

specific instant of time, some of them could lie outside the
unary circle. However, several experiments have shown that
the presence of some instants of time in which the eigenvalues
lie outside the unary circle does not significantly affect the
error dynamic and, consequently, the final performance.

The fraction of points of the validation set having at least
one eigenvalue outside the unary circle over the total number
of points can be used as a confidence measure for the stability
of the NOE model on new data. This ratio can be used as a
criterion to assess the local stability of the obtained model.
The smaller the ratio the smaller the probability that the NOE
neural network will become unstable during its operational
evolution. In the same direction, we can assert that the model
behaves well during the operating phase if the eigenvalues
are reasonably far, according to some metric, from the unary
circumference both on training and validation data.

V. EXPERIMENTAL RESULTS

The following experiments are representative of a large
set of experiments carried out to compare NOE models with
virtual neurons ones. The experiments are parameterized in
the regressor vectors and the number of hidden units. We will
indicate with the predicted output delayed byinstants
of time, with and
the th virtual -delayed state and input, respectively (when
there is only one state or input theindex will be omitted).
We will then apply the stability criterion to NOE models
to test their local stability. Training was accomplished by
considering the highly efficient Levenberg–Marquardt (LM),
DFP, and BFGS algorithms [13], corrected to deal with the
recurrent features of the model. We implemented, for the
NOE networks, the teacher forcing modality [2] to provide
a nice initialization of the regressors. The provided MSE
and plots are those obtained with the best algorithm. It
should be outlined that we did not experience any significant
difference in performance among the algorithms (LM was
slightly inferior in performance but it is computationally less
intensive).

A test set was introduced to monitor, over training time,
the model performance, hence limiting undesired overtraining
effects caused by overdimensioned model.

A. Linear Model

The first experiment refers to the linear circuit depicted
in Fig. 2 characterized by a capacitor of and
a resistor of (the constant of time is
hence 10 s). Training , test , and
validation data have been obtained by applying
step signals with uniformly extracted amplitudes and time
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TABLE I
PERFORMANCES IN VALIDATION AND THE REGRESSORVECTORS FOR THECONSIDERED STRUCTURES

TABLE II
MSE OF THE BEST NEURAL NETWORK

TABLE III
PERFORMANCES IN VALIDATION AND THE REGRESSORVECTORS FOR THECONSIDERED STRUCTURES

durations. MSE’s in validation are given in Table I, MSE’s
in training, test, and validation in Table II. In Table II (and
Table III), each column refers to a different neural structure
grading, left to right, from NOE to pure virtual states neural
structures. In particular, the first column refers to a NOE
model, the second to a NOE/virtual state mixed structure,
the third to a pure virtual neurons structure. The second row
characterizes the state components of the regressor vector
while the last column completes with the inputs. The best
models have been identified with a grey shaded cell in the
table. With respect to Table I, we note that the NOE model
is slightly better than the virtual states one but the difference
is neglectable. All models approximate the process with high
accuracy and are practically indistinguishable. Table II shows

that virtual neurons structures have more difficulties in the
training phase compared to NOE networks despite the use
of high sophisticated training algorithms. We think this is
due to the difficulty of the training algorithm to converge to
a good minimum because of the presence of loops (which
introduce a dynamic not directly controllable by the training
phase). If the state variables were measurable then the training
algorithm would have been applied to a modified error function
comprising the error between the real states and the ones
estimated by the neural network. We should appreciate the
fact that in the linear case the pure virtual states model has
no feedbacks on the measured output and, despite that, the
virtual states have been configured by the training algorithm
to exactly mimic the system.
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Fig. 3. Pole evolution over validation time for the NOE model in the linear
system case.

We then studied the stability of the best NOE model
characterized by five hidden units and a single feedback on
the output. According to the criterion given in Section IV we
computed the evolution of the pole over the validation time;
Fig. 3 shows such evolution in the– plane. Note that there
is only one real pole (identified with an X): the NOE model
during the operational evolution keeps the pole constant at
a value smaller than 0.5 for each instant of time. It is also
interesting to observe that such a pole does not coincide with
the system one (whose value is ).

The pole has been evaluated by taking into account the
estimated regressor vector instead of the real one in computing
the gradients; we verified that there was no difference between
the poles, thus proving that the obtained model is also a good
predictor.

B. Nonlinear Model: Drum-Type Boiler

To test performances on a nonlinear system we considered a
power plant driven by a drum-type boiler. Letbe the steam
pressure within the boiler (supposed to be uniform), the
steam pressure at the turbine inlet, the radiating power
(which is nonlinearly related to the fuel flow via lookup
tables), and the aperture of the turbine valve (0 means
that no steam flow inputs the steam turbine, 1 that the valve is
fully open). The physically-based discretized equations, which
describes the boiler in a simplified (but quite accurate) way, are

(10)

where , and are constants which characterize
the specific plant; and are the external input vari-
ables, the pressure is measurable, and the pressureis
nonmeasurable.

The process is highly nonlinear. The output is charac-
terized by two main dynamics: the first one, associated with

, is very fast (few seconds), while the second one, related

to , is quite slow (several minutes). We know,a priori, that
by linearization of (10) the linear transfer function has a zero
associated with the opening of the turbine valve. For its nature
(10) can be easily expressed as (3).

The data extraction phase, necessary to generate, is a
critical step. In fact, if we randomly excite the inputs, we end
with unrealistic behaviors for the plant and the pressures tends
to infinity (e.g., this happens by giving maximum fuel for long
time while keeping close the turbine valve). The problem was
overcame by slightly correlating the inputs so as to constitute
feasible input profiles.

Differently from the linear case, which was reasonably
simple, it is required a high number of data to configure
the nonlinear models. This immediately means that we need
a large training set and hence, long training time. A data
decimation phase is then generally considered to limit the
computational complexity of the training procedure. The fre-
quency spectrum of the input and the output signals was first
computed by applying a FFT: the decimation frequency was
taken to be five times the fastest relevant dynamic of the
process. From the resulting set we extracted 2500 data for
training, 2500 for testing, and 2500 for validation. Validation
on these data provides a MSE close to the test set and hence
it has been not be considered in the following. As a critic
validation experiment we present an input sequence composed
by independent steps on and : these signals have not
been generated during training where inputs are correlated to
grant feasibility. This input profile could be the typical signal
that an operator gives to the plant during a manual control.
With this validation we wish to stress the models so as to
emphasize the limits of the approximation accuracy.

We experimented that a single layer (5–7 hidden units)
was sufficient for the envisioned application, a second layer
only increases the computational complexity of the training
procedure without benefits in accuracy.

As with the linear case, we considered different model
structures. Here, the variable refers to the measurable
pressure , the nonmeasurable state is associated with
the pressure , and . Tables III and IV
introduce the performances of the different models. In this case
we note that the NOE model performs significantly better than
the pure virtual states one: the application is more complex and
the training algorithm is not efficient enough to identifying a
good setting for the weights.

Fig. 4 presents the validation error over the considered
validation set for the NOE neural network. As we can see it
seems that there is large error around sample 1500, in reality,
it corresponds to a 2.5% relative error (there, the pressure
reaches 1.9 10 Pa). Anyway, such a high value for the
pressure is a limit case also for the system which should
work in correspondence with smaller values. Fig. 5 shows
the correspondent validation error for the pure virtual neurons
neural network; the hybrid models performance can be placed
between the two. It is interesting to note that the error is more
distributed but, conversely, it is higher.

The evolution of the two poles of the best NOE in validation
is given in Fig. 6(a) for the – plane while the punctual
evolution of their values over validation time is given in
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TABLE IV
MSE OF THE BEST NEURAL NETWORK

Fig. 4. Validation error for the NOE neural network.

Fig. 5. Validation error for the virtual state neural network.

Fig. 6(b). The two poles P1 and P2 are distinct, real and,
differently from the linear case, evolve during time so as to
generate a small interval. We observe that P2 is close to the
unary circle but it never reaches it [see Fig. 6(b)] and that
when P1 increases, P2 decreases. We experienced in other
neural models that there it might exist a set of instants of
time for which a pole is outside the unary circle but if the
ratio between such points and is small the neural network
will be stable. Local instability implies instability when the
ratio increases, as happens when the weights have been not
configured properly.

(a)

(b)

Fig. 6. (a) Poles’ evolution over time for the best NOE model in theI–R
plane and (b) in the poles-time plane.

In general, only when the performances of the model are
satisfactory as well as the distribution of its poles, we can
state that the model can be reasonably considered to be a
good approximation of the system.

VI. CONCLUSIONS

The paper deals with neural modeling of dynamic systems
when some of the system state variables are not measurable.
If a priori information about the structure of the equations
ruling the system is available, topologies characterized either
by the input–output or the space-state representations can be
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constructed by introducing virtual states to provide enough
degrees of freedom to the model. Even if such models are
effective in many applications, training inefficiency may im-
pair their performances and further research effort should be
carried out on this front. The paper shows that an effective
solution to this approximation problem can be obtained by
considering NOE models which experimentally show, once
more, to be extremely interesting neural network structure.
The model accuracy and its stability need then to be verified
to certify the quality of the approximating network; to this end
we suggested a novel criterion to perform this task.
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