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Neural Modeling of Dynamic Systems
with Nonmeasurable State Variables

Cesare Alippi,Senior Member, IEEEand Vincenzo PiuriSenior Member, IEEE

Abstract—The paper studies the ability possessed by recurrent function, e.g., the mean squared error function, provided that
neural networks to model dynamic systems when some rele- an efficient training algorithm [9] has been chosen.
vant state \(arlables are not.measurable. Ngural architectures Conversely, when some (if not all) the state variables are
based on virtual states—which naturally arise from a space . .
state representation—are introduced and compared with the nonmeasurable, we shouldlldentlf){ t_he neural structure to be
more traditional neural output error ones. Despite the evident used and the most appropriate training procedure.
potential model ability possessed by virtual state architectures Sometimes, the presence of nonmeasurable states can be
we experimented that their performances strongly depend on the yrjyjglized if there it exists an equivalent input-output repre-

training efficiency. A novel validation criterion for neural output . . . -
error a?rchitecturgs is suggested which allows to assess the %euralsematIon for the equations ruling the process (mathematically
network not only in terms of its approximation accuracy but also  the dependence on the nonmeasurable states can be reduced
with respect to stability issues. to a direct dependency on the output dynamic); for instance,
Index Terms—Dynamic systems, recurrent neural networks, this hicely happens when all equations ruling the process
stability, training. are linear. In such a case, the problem can be solved by
considering the straightforward input—output nonlinear output
erro—NOE—representation instead of the more complex
state-space one [10]. More realistically, we do not know
HE development of a black-box model for a dynamighether the contribution provided by nonmeasurable states
system is an assessed procedure to be envisaged wheiir be reduced to an input—output representation or not and,
ever the equations ruling the system are unknown, inadequgierefore, we should consider different neural structures (e.g.,
to explain the process behavior or computationally intractablQOE, virtual states, etc.), identify a good neural family (e.g.,
To this end, linear system identification techniques [1] havtermine the number of layers and neurons per layer) and,
been proved to be valuable and theory-supported tools to sofiflly, the best model within such a family (i.e., configure
the problem if the system is linear or the interest is arouRfe weights). Hence, the search for an acceptable neural
a working point. Unfortunately, linear models suffer fromhetwork is an extremely complex and time consuming pro-
inaccuracy if the system to be approximated is significantigdure; we would like to simplify it by eliminating the least
nonlinear and evolves through different working points. efficient/interesting neural topologies from the candidate ones.
To overcome such limits, recurrent neural networks [2fhis operation should be intended as follows. If a neural
have been suggested as alternative solutions whose validify,cture is classified as not efficient with respect to a class
has been shown in a wide range of applications. In thg snpjications it does not mean that it is useless (it could
instrumentation and measur_ement fields, neural networks h%\éeextremely appropriate for solving a specific problem) but
been successfully used to implement (e.g., see [3]), enhapge herformances for a generic application are modest. We
(e.g., see [4]), and calibrate (e.g., see [S]) both real and virtygl,rienced that several neural structures show this behavior
SEnsors (_e.g., see [6]), process signals and images (e.g.,(g_e& the memory neuron networks [2]). These networks either
[7]), predict, c'ontr.ol, anq 'model plants (e.g., see [8]). rovide really excellent performance on specific applications
The approximating ability of such neural networks depen t, more frequently, modest ones. This should be somehow
on a priori mformat,on ot ;ystem, the number.oelated to the approximation ability of such network, i.e.,
available data, the influence of noise on data and, main Ye property to model a generic dynamic system, and the
on their structure (the choice for a wrong neural model MaYeeo tiveness of the train procedure '
in fact, drastically impair its approximating accuracy). In thi i we studv and m. re the featur ftw
Inputs and outputs of the system (here accounting for bath S paper, we study and compare fhe features of two
external outputs and states) are usually implicitly supposedr‘{%ural structures to approximate dynamic systems in order

be measurable which ends to be a reasonable hypothesiéoinrank their effectiveness when some state variables are

many applications. When this assumption holds, the netWongnmeasurable. The reference architecture is the output error

iah ' . N : ural network NOE [2] in which the network outputs are
weights can be easily obtained by minimizing a dlscrepangyedback to constitute additional inputs and the concept of

state. Such networks are extremely interesting for their proven
Manuscript received May 12, 1997; revised August 17, 1999. __approximation ability within a wide range of applications.
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presented in the literature [10] by introducing virtual neurons. In the following, we will focus the attention on NARX,
Virtual neurons are output neurons which do not directiMOE, and virtual neurons model structures. Briefly, the NARX
contribute to generate the network output but are feedback atdicture considers both past inputs and outputs of the system
delayed to constitute additional inputs. This ends in addition@l infer 4(¢), we havep = [u(t), w(t—1), -- -, u(t—n,,), y(t—
states for the network, an appreciable feature for dealing with, - - -, y(¢t — n,)] and, consequently, the plant needs to be
unknown dynamics. accessible on line to provide the requirgd. Differently,

In the comparison we will not consider the wide clashe NOE structure processes only past inputs and predicted
of fully recurrent models since it has been shown that amptputs, i.e.,¢ = [w(t), u(t — 1), -, u(t — n,), {t —
recurrent network can be transformed into a canonical fortn, -- -, §(¢ — n,)]; it is not required the presence of apy
realizable with static and NOE neural networks [10]. coming from the plant during its operational phase: model

The structure of the paper is as follows. Section Il formaknd plant are separate entities.
izes the problems of learning from examples and introducesSince static regression-type neural networks are universal
the NARX and the NOE neural models. Section Il addressefatic function approximators [11] we implemented them as
aspects related to the modeling of dynamic systems whewore of the envisioned model structures. The static assump-
some (if not all) dynamic states are not measurable atidn, which guarantees the universal approximation property,
introduces the virtual neuron networks. Section IV providasay be relaxed to deal with dynamic systems: up to now,
a stability criterion for NOE models. Section V presents the approximation ability has been proven to hold also for
comparison among performances provided by different neutginamic systems under the hypothesis that there is an acyclic
model structures. Two experiments are presented addressirmp@putational graph frorp to 4(¢). Note that NOE models do
linear model and a nonlinear one, respectively. In particularot satisfy this hypothesis since their regressor vectors contains
the simplified but strongly nonlinear model refers to a drunpast predicted values.
type boiler, characterized by a dynamic associated with a

nonmeasurable state. lll. M ODELING DYNAMIC SYSTEMS
HAVING NONMEASURABLE VARIABLES
II. NARX AND NOE NEURAL STRUCTURES For ease of notation, but without any loss in generality, we

For sake of simplicity, let us focus the attention on §&n assume that the deterministic behavior of the process to

MISO system (multiple inputs single output), which received® modeled is ruled by the system of differential equations

the n-dimensional input vectow(t) and produces the one- {a: =0.(z, y, u)

dimensional outpuy(t), affected by an additive i.i.d. noisg 7
v =9,(%, y, v

taking into account both the approximating model deficiencies

and the instrumentation noise. _ wherey is the measurable state (which also coincides with
In the following, we assume that the system is both obsenyje output), and: is an internal state (the extension to several

able and controllable. _ _states is trivial and does not modify the results here achieved).
A specific model approximating the dynamic system will be A giscrete realization of (2) can be easily obtained (e.g., by

indicated agj(t) = f(6, ¢) whered is then-dimensional vec- gpp1ving the Euler explicit discretization) and leads to consider
tor of parameters containing weights and biageis; obtained

()

by minimizing the mean square erro—MSE—function x(t) =g (x(t — 1), y(t — 1), u(t)) 3)
1 N y(t) :gy(‘T(t - 1)7 y(t - 1)7 u(t))
R _ R y
o= ars i > (W) it 0) (1) Even if some noise affects and corrupts the generatiog of
=1

andx over time, (3) is representative of many real processes
and represents a good starting point for generating new time
discrete model structures. Relationships concerning distur-
Bﬁnces will be captured by the neural model during the training
phase directly from the available data s&t'. Of course,

evaluated over the&Z" set which containgV input—output
pairs.
The relationship between the inputs and the output

the system can be captured by considering tbgressor

vector ¢, which contains a limited time-window of actual and'ntrod_uction of new mOdels _requires further _validation anq
past inputs, outputs, and—possibly—predicted outputs. In ﬂ:ﬁﬁperlmgntal comparison _W|th.already existing ones. This
paper, we consider model structuggs) — f(¢) in which the allows either to prove their efficacy or suggests the neural

function f(-) is a regression-type neural network, characterizé(ﬁrUCture not to be considered, hence simplifying the search

by N, inputs, N}, nonlinear hidden units and a single effectivePace
linear output [8]. The presence of a dynamic is modeled l:R/ _ _ )
delay elements (otime lag3, which may affect both inputs A" System Modeling with NARX-Based Neural Topologies
(time history on external inputs) and output (hence allowing If the internal stater is measurable, we could simply con-
to deal with the system dynamics). sider a neural network approximating each nonlinear function

Several neural model structures have been suggested ingheand g, of system (3), with the regressor vecter =
literature (e.g., see [2] for a review), which basically differ ifz y wu]. In this case, identification of the best neural network
the regressor vector. would be a reasonably easy task.
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y(t) T x(t) what-if applications [12]) which require a model evolving
independently from the plant.

To afford this case, we can consider two approaches. The
first solution, following the guidelines given above, takes into
account suitably delayed virtual outpuis Some a priori
information about the process could be exploited to guide

the model definition (e.g., the number of nonmeasurable
‘ x(t-1 states may be approximately deduced by relying on physical-
based equations). If some states are measurable, we could

u(t y(t-1) envisage mixed neural structures which include both virtual

and measurable states: 4f possesses its own dynamic, a
feedback onj (as in the NOE model) is necessary.
The second solution is to construct a NOE model to model
Conversely, if the internal stateis not measurable, generathe system without introducing any nonmeasurable states. This
tion of a model approximating the (3) becomes more difficulgolution is particularly appealing since we do not require any
As we already mentioned, if it is possible to manipulate thpriori information. Training is carried out by using recurrent
system (2) and reduce it to an equivalent explicit nonlinetgarning algorithms similar to the ones necessary for the virtual

Fig. 1. Black-box realization of (3).

differential equation of the type states. In this case there are no problems related to the state
initialization since, at the beginning, the estimate valjiese
i =g(y, y, 1, u) (4) the valuesy themselves.

then the approximating problem can be solved by considering
a NARX type neural network, e.g., with = [y(t — 1) y(t —
2) u(t) w(t— 1) IV. A STABILITY CRITERION FOR NOE MODELS
Once training has been completed one simply observes

B. System Modeling with Virtual States Neural Topologies performances and discovers whether the model approximates

If the statex is not measurable we can introduce a ne\we system with enough accuracy or not but, in general, nothing

neural structure resembling the mathematical description %qgtabt?rtsalgr'?ebrpc?r: :‘tc?r S&%’g'tﬁ'el?atlhse?ll(;)rvlz;ng_i_hv;ecﬂg\r/.'gr?
(3). The solution is extremely natural and intuitive and lea ity criter u W ' ten

to the introduction of aiirtual nonmeasurable internal state Nerlée;:getlz:n&derlng the relationships between NARX and

Such a state is not necessarily an estimate of the real internal —. i .
o : - — is obvious that, ify(t) = §(¢), V¢, the NOE model
statex, even if ideally it could be buta priori, - and z coincides with the NARX model: the real output feedback at

are not even correlated. The virtual statés a state variable e network inout can be substituted by its estimate. achievin
which simply provides the dynamic necessary to give enough™ . =" 1Pt YIS ¢ : 9
situation similar to the one of (3). It is experimentally

flexibility to the model. The new network structure receive . -
the regressor vectas = [z y «] and, with respect to systemWe".k.nOW.n that,_ d_ue t_o_the noise presence and the tra|n|_ng
(3), it can be represented as in Fig. 1, where we assume t gtfnm_en_mes, this is difficult to obtain. In the worst case, |f_
the black rectangle represents a time delay. It is immediate & training procedure has not been perfec_ted gfr the model is
natural derivation of the neural structure from system (3) arl‘%a(;:curate (e'g'h becauzg of a wrong ﬁhlo |ceZ. ) modelllk |
hence its potential interest. The virtual states neural struct ﬁ% sr)]/stem mg teveré |verge.'dNevert © edss, Itis modrel ! e)r/]
extends [10] where it is assumed a measurable at the training Proce ure provides a goo NOE model suc
that errore(-) = ¢(-) — y(-) over time is small.

Note that the initial condition fot is unknown: during Differently from linear models, the presence of a saturatin
training it is required the network also to learn how to become y ' P 9

stable. This increases the difficulty of training and it migh'?grr:::gfar:tfrlézctc;n;nc?;.?dgesn -l;]r;':sgé?a’eiyrgggzog?ttﬁggoeqt) ¢
impair accuracy. We will experimentally show in Section I\}.; th ' ¢ ue A tI)IU l; t;1 del traiect di utpu
that, even if the virtual states network naturally arises frogn 1'c SYSEM 1S Unstable. 1 Ihe model trajectory diverges

. - e . rom the system one is within a cylindrical neighborhood
(3), its training phase may be difficult. This is due to thg](-%fntered onto the system trajectory). In fact, the absolute

presence of virtual states that, by providing additional degreé& erence between the two traiectores is alwavs structurall
of freedom, increase the probability of ending in a suboptim | J y y

- ounded by a constafi(t)|C, Yt. If we consider a hyperbolic
minimum. .
tangent functionZh(z) = (e¢* — ¢ *)/(e” + ¢~ 7), such a
constant is equal to the sum of the absolute values of the
bias b, and the weight®); feeding the output neuron, i.e.,
The model approximation of systems having nonmeasuraldle= Ef\z’l 1671 + |bo.
states becomes particularly difficult when the neural modelUnder the assumption that the system to be approximated
must approximate the process or the plant without having stable, the performance evolution over time can be studied
access to it on-line during its operational phase. This requitey analyzing the discrepaney-) = 4(-) — y(-) between the
ment is of particular interest in all those applications (e.gsystem output [supposed to be ruled by (3)] and the NOE

C. System Modeling with NOE-Based Neural Topologies
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model (obtained after training) { _x
RC RC
Systemiy(t + 1) =g,(¢), ¢ = [y(t), u(t), u(t — 1)] 4 y=—xtu
NOE: (¢t + 1) = g4(¢), ¢ = [§(t), u(t), w(t —1)] u y R:IOOOQ} 1o
L (=>T=10s
with the same initial conditiongj(0) = y(0) = %°. The C=10"F

evolution over time of the error can be obtained by consideri
the Taylor expansion around the true regressor vegtoi the

NOE model
N , R specific instant of time, some of them could lie outside the
HE+1) = g5(0) +95(0)(& — )+ O ®) unary circle. However, several experiments have shown that
and by subtracting the equation ruling the system, thus dibe presence of some instants of time in which the eigenvalues
taining lie outside the unary circle does not significantly affect the
R R error dynamic and, consequently, the final performance.
G+ 1) =yt +1) = (95(¢) = 9,()) +95()(@ =) + O g fraction of points of the validation set having at least
. . _ ) (6) one eigenvalue outside the unary circle over the total number
Let & be the maximum time lag gssomated W'th the OUtpU¢ points can be used as a confidence measure for the stability
and .ng :Aag/ay(t —7) the grad'e[“ w.r.t th_e time Iaggedof the NOE model on new data. This ratio can be used as a
predictiony (t — 7). 'I:he vector(y — ‘f) can be mterpreAted S criterion to assess the local stability of the obtained model.
the error VeCtO(T¢_<p) =10, 0, (4t)=u(®), -, (4!~ The smaller the ratio the smaller the probability that the NOE
k) —y(t — k))I". Equation (6) becomes neural network will become unstable during its operational
e(t+1) =Vgoe(t) + Vgie(t — 1) + -+ + Vgre(t — k) evolution. In the same direction, we can assert that the model
+ (g5(0) — g,(¢) + O @) behaves well during the qperatlng phase |'f the eigenvalues
are reasonably far, according to some metric, from the unary
which represents the error dynamic over time. If we assursgcumference both on training and validation data.
a small discrepancy between the real model and the approxi-
mated one, i.e., each component of the column vegtor @) V. EXPERIMENTAL RESULTS
is sufficiently small we can discard the term. By indicating
with F the forcing input(g;(¢) — g,(¢)), (7) becomes the
time discrete ordinary differential equation

n
F%. 2. Linear system.

The following experiments are representative of a large
set of experiments carried out to compare NOE models with
virtual neurons ones. The experiments are parameterized in
e(t+1) = Vgoe(t) +Vgie(t—1)+-- -+Vare(t—k)+F. (8) the regressor vectors and the number of hidden units. We will

) indicate withg(t—7) the predicted output delayed byinstants
It should be noted that the gradients are evaluated @verss time with Ti(t — ) andw;(t — 7)

and not overy. Due to the universal approximation propertyyne jth virtual 7-delayed state and input, respectively (when
being g;(y) a neural NARX approximation of, (), the there is only one state or input thendex will be omitted).
term (gy() — 9y()) may become reasonably small, i.e., thgye will then apply the stability criterion to NOE models
obtained model possesses good prediction abilities when {gdiest their local “stability. Training was accomplished by
with data coming from the system. . considering the highly efficient Levenberg—Marquardt (LM),
The prediction erroe(-) is composed of two contributions, pbep  and BEGS algorithms [13], corrected to deal with the
deriving from the noise and the systematic errerdue to the ocyrrent features of the model. We implemented, for the
training inefficiency_, the limited data set, and the quel biaRoE networks, the teacher forcing modality [2] to provide
The NOE model is close to the process output, being stabjepice jnitialization of the regressors. The provided MSE
at that instant of time, only if the eigenvalues associated with, 4 plots are those obtained with the best algorithm. It

(8) lie within the unary circle. _ should be outlined that we did not experience any significant
If the system is error free (i.ey, = 0) and we excite systém gigerence in performance among the algorithms (LM was

and model with a step function, the error tends to zero only dfightly inferior in performance but it is computationally less
the eigenvalues are within the unary circle at the steady St"’}Fﬁensive).

We experimentally observed that there is an error at the steady test set was introduced to monitor. over training time

state even when eigenvalues lie within the unary circle. In oy{g model performance, hence limiting undesired overtraining
opinion, this is due to the presence of a nonnull forcing tergacts caused by overdimensioned model.
F = F, namely, the NOE model has a nonnull prediction error

even when it receives the true regressor vector. In such a cgg€| inear Model

the error at the steady state satisfies the relationship , ) . . i
The first experiment refers to the linear circuit depicted

_ k - in Fig. 2 characterized by a capacitor 6f = 0.01F and

Css =F<1—Z ng> . (9) a resistor of R = 1000 Q (the constant of timel is

=0 hence 10 s). Trainind N = 500), test (N = 500), and
We note that the eigenvalues associated with (8) depend\aiidation (N = 200) data have been obtained by applying
the working point along the trajectory and, with respect to step signals with uniformly extracted amplitudes and time
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TABLE |
PERFORMANCES IN VALIDATION AND THE REGRESSORVECTORS FOR THECONSIDERED STRUCTURES
¥y [ I
u[ —p — —>
ya-n | ] -1 | ye-n {f _ j
H(t-2) yi-D y(-1 x(t—1) x(t-1 x-1) )_C(t'l) (-1 MS%
x(t-1) -2 | me-1 -2 | %¢-D x10
u(t)
2.514 2.505 2.508 2.505 2.506 13.657 2.863 3.186 u(t = 1)
TABLE 1
MSE oF THE BEST NEURAL NETWORK
E | [ I > —>
MSE Q | I
Training 1.598-10° 2.595-10™ 5.407-10*
Test 1.360-10° 2.746-10" 5.058-10"
Validation 2.505-10° 2.505-10° 2.863-10°
TABLE 1lI
PERFORMANCES IN VALIDATION AND THE REGRESSORVECTORS FOR THECONSIDERED STRUCTURES
—>
— =]
y(=1 . . -1 B B _ _ MSFI
Pt -2) y(e=1) =D *(t—-1) %(t-1) (-1 X(e-1) % (-1 x10
(¢t -1 x(t-2) %,(t-1) x(t-2) 5,1
ul(t)
0.164 0.797 0.253 1.722 0.326 230.034 8.917 13.947 (1)
2
u1(t)
0.908 0.527 0.431 0.482 1.098 5624 12.753 22.311 w, (1)
7]
u, (£ ~1)

durations. MSE’s in validation are given in Table I, MSE'shat virtual neurons structures have more difficulties in the
in training, test, and validation in Table II. In Table Il (andraining phase compared to NOE networks despite the use
Table IIl), each column refers to a different neural structura high sophisticated training algorithms. We think this is
grading, left to right, from NOE to pure virtual states neuralue to the difficulty of the training algorithm to converge to
structures. In particular, the first column refers to a NOE good minimum because of the presence of loops (which
model, the second to a NOE/virtual state mixed structunetroduce a dynamic not directly controllable by the training
the third to a pure virtual neurons structure. The second rgahase). If the state variables were measurable then the training
characterizes the state components of the regressor veelgorithm would have been applied to a modified error function
while the last column completes with the inputs. The besbmprising the error between the real states and the ones
models have been identified with a grey shaded cell in tlestimated by the neural network. We should appreciate the
table. With respect to Table I, we note that the NOE modé#ct that in the linear case the pure virtual states model has
is slightly better than the virtual states one but the differenc® feedbacks on the measured output and, despite that, the
is neglectable. All models approximate the process with higlirtual states have been configured by the training algorithm
accuracy and are practically indistinguishable. Table Il shows exactly mimic the system.
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to W, is quite slow (several minutes). We knosvpriori, that
0.8t by linearization of (10) the linear transfer function has a zero
osl ‘ N associated with the opening of the turbine valve. For its nature
' (10) can be easily expressed as (3).
04r The data extraction phase, necessary to geneéfiteis a
> 02t critical step. In fact, if we randomly excite the inputs, we end
% 0 % with unrealistic behaviors for the plant and the pressures tends
2 to infinity (e.g., this happens by giving maximum fuel for long
—-02r time while keeping close the turbine valve). The problem was
-04f overcame by slightly correlating the inputs so as to constitute
o6l feasible input profiles.
. o Differently from the linear case, which was reasonably
-08r ot simple, it is required a high number of data to configure
-1 L =

E 05 0 05
Real

the nonlinear models. This immediately means that we need
a large training set and hence, long training time. A data

decimation phase is then generally considered to limit the
®omputational complexity of the training procedure. The fre-
guency spectrum of the input and the output signals was first
computed by applying a FFT: the decimation frequency was
We then studied the stability of the best NOE modehken to be five times the fastest relevant dynamic of the
characterized by five hidden units and a single feedback gfpcess. From the resulting set we extracted 2500 data for
the output. According to the criterion given in Section IV Weraining, 2500 for testing, and 2500 for validation. Validation
computed the evolution of the pole over the validation timgn these data provides a MSE close to the test set and hence
Fig. 3 shows such evolution in thie-R plane. Note that there jt has been not be considered in the following. As a critic
is only one real pole (identified with an X): the NOE mode}ajidation experiment we present an input sequence composed
during the operational evolution keeps the pole constant 1§} independent steps di, and A,: these signals have not
a value smaller than 0.5 for each instant of time. It is al3geen generated during training where inputs are correlated to
interesting to observe that such a pole does not coincide Wijtant feasibility. This input profile could be the typical signal
the system one (whose value lig7” = 0.1). that an operator gives to the plant during a manual control.
The pole has been evaluated by taking into account t@th this validation we wish to stress the models so as to
estimated regressor vector instead of the real one in computg}gphasize the limits of the approximation accuracy.
the gradients; we verified that there was no difference betweenye experimented that a single layer (5-7 hidden units)

the poles, thus proving that the obtained model is also a goggs sufficient for the envisioned application, a second layer
predictor. only increases the computational complexity of the training
procedure without benefits in accuracy.
B. Nonlinear Model: Drum-Type Boiler As with the linear case, we considered different model
To test performances on a nonlinear system we considere#frictures. Here, the variablg refers to the measurable
power plant driven by a drum-type boiler. LEtbe the steam pressurel;, the nonmeasurable stateis associated with
pressure within the boiler (supposed to be unifori), the the pressureP’, v; = W. anduy, = A,. Tables Ill and IV
steam pressure at the turbine inlé,.4 the radiating power introduce the performances of the different models. In this case
(which is nonlinearly related to the fuel floW. via lookup Wwe note that the NOE model performs significantly better than
tables), andA, the aperture of the turbine valve (0 meanthe pure virtual states one: the application is more complex and
that no steam flow inputs the steam turbine, 1 that the valvethg training algorithm is not efficient enough to identifying a
fully open). The physically-based discretized equations, whig®od setting for the weights.
describes the boiler in a simplified (but quite accurate) way, areFig. 4 presents the validation errgr over the considered
validation set for the NOE neural network. As we can see it
Plt+1) =P(t) + b\/P(t)(P(t) = P (®)) seems that there is large error around sample 1500, in reality,
(c+dP®) + eQraa(W.(t))

it corresponds to a 2.5% relative error (there, the pressure
Py (t+1) = Py (t) + £/ PE(P(E) — Purn(t)) reaches 1.9x 10° Pa). Anyway, such a high value for the
+ gAb(t)Psh(t)

pressure is a limit case also for the system which should

work in correspondence with smaller values. Fig. 5 shows
where b, ¢, d, e, f, and g are constants which characterizéhe correspondent validation error for the pure virtual neurons
the specific plant;A, and W, are the external input vari- neural network; the hybrid models performance can be placed
ables, the pressurE.;, is measurable, and the pressuteis between the two. It is interesting to note that the error is more
nonmeasurable. distributed but, conversely, it is higher.

The process is highly nonlinear. The outgty, is charac-  The evolution of the two poles of the best NOE in validation

terized by two main dynamics: the first one, associated with given in Fig. 6(a) for the/—R plane while the punctual
A,, is very fast (few seconds), while the second one, relatedolution of their values over validation time is given in

Fig. 3. Pole evolution over validation time for the NOE model in the line
system case.

(10)
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TABLE IV
MSE oF THE BEST NEURAL NETWORK

MSE x10'! —
Training 0.093 0.084 6.563
Test 0.082 0.130 16.909
Validation 0.164 0253 35624
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Fig. 4. Validation error for the NOE neural network.
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Fig. 6. (a) Poles’ evolution over time for the best NOE model in fhé
plane and (b) in the poles-time plane.

Fig. 5. Validation error for the virtual state neural network.
Fig. 6(b). The two poles P1 and P2 are distinct, real and

giff W f he I ve duri ) 'In general, only when the performances of the model are
lfterently from the linear case, evolve during time so as t§’atisfactory as well as the distribution of its poles, we can

generate a small interval. We observe that P2 is close to §{&te that the model can be reasonably considered to be a
unary circle but it never reaches it [see Fig. 6(b)] and thgbod approximation of the system.

when P1 increases, P2 decreases. We experienced in other
neural models that there it might exist a set of instants of VI. CONCLUSIONS

time for which a pole is outside the unary circle but if the |4 paper deals with neural modeling of dynamic systems
ratio between such points and is small the neural network \yhen some of the system state variables are not measurable.
will be stable. Local instability implies instability when thejf a priori information about the structure of the equations
ratio increases, as happens when the weights have beenroiitg the system is available, topologies characterized either
configured properly. by the input—output or the space-state representations can be
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constructed by introducing virtual states to provide enough dynamical process modeling/EEE Trans. Neural Networksyol. 5,

degrees of freedom to the model. Even if such models re Mar. 1994. o y o o
. . L. . . . . [11] G. Cybenko, “Approximation by superposition of a sigmoidal function,
effective in many applications, training inefficiency may im="" y\iath. Contr. Signals Systvol. 2, 1989.

pair their performances and further research effort should B€] C. Alippi, A. Cori, V. Piuri, and F. Pretolani, "Monitoring and real

; ; ; time simulation of power plants: A neural based environmentPrioc.
carried out on this front. The paper shows that an effective [EEE_IMTC96 Brussels, Belgium, June 4-6, 1996.

solution to this approximation problem can be obtained kys) w. press, S. Teukolosky, W. Vetterling, and B. Flannégmerical
considering NOE models which experimentally show, once Recipes in C: The Art of Scientific ComputingCambridge, U.K.:
more, to be extremely interesting neural network structure, ©amPridge Univ. Press, 1992.
The model accuracy and its stability need then to be verified
to certify the quality of the approximating network; to this end
we suggested a novel criterion to perform this task.
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