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FPE-Based Criteria to Dimension
Feedforward Neural Topologies

Cesare Alippi,Member, IEEE

Abstract—This paper deals with the problem of dimensioning a
feedforward neural network to learn an unknown function from
input/output pairs. The ultimate goal is to tune the complexity
of the neural model with the information present in the training
set and to estimate its performance without needing new data
for cross-validation. For generality, it is not assumed that the
unknown function belongs to the family of neural models. A
generalization of the final prediction error to biased models is
provided, which can be applied to learn unknown functions both
in noise free and noise affected applications. This is based on a
new definition of the effective number of parameters used by the
neural model to fit the data. New criteria for model selection are
introduced and compared with the generalized prediction error
and the network information criteria.

Index Terms—FPE, learning from samples, model selection,
neural networks.

NOMENCLATURE

Neural network parameters vector.
Trained parameters vector.
Optimal parameters vector.
Training error function.
Error function.
Number of training data.
Training data set.
Training pair.
Neural network characterized by
Difference between the real value and
the neural output
covariance matrix of
Gradient of
Hessian of
Moore-Penrose pseudoinverse of
gradient w.r.t
Orthogonal projector onto the column
space of
Moody’s effective number of
parameters.
Alippi’s effective number of
parameters.
empirical average of

I. INTRODUCTION

L EARNING an input–output relationship from a set of
value pairs is a fundamental problem in many fields.
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Examples include reconstructing unknown functions [1], time
series forecasting [2], and modeling very complex processes
[3].

The determination of a model which approximates a func-
tion, given a set of input/output pairs, comprises three distinct
phases: model selection (to choose the correct complexity of
the model), model parameterization or learning (to determine
the parameters of the model), and model validation (to evaluate
the generalization ability of the model). The model with the
optimal generalization ability is then chosen to solve the
function-approximation task.

The function-approximation problem has been widely
addressed in the literature, usually with respect to linear
models under the assumption that the function to be learned
is linear or quasilinear. If this is not the case, the family of
approximation models must be extended to include nonlinear
models such as neural networks [4]. A number of powerful
neural techniques have been developed, such as radial-basis
functions [5], [6], mixture of Gaussians [7], feedforward
[8], and recurrent [9] topologies.

Several criteria have been suggested to select an appro-
priate neural topology by reducing/optimizing the number of
neurons/weights in the network (e.g., optimization based on
spectral decomposition [10], covariance matrix [11], optimal
brain damage (OBD) [12], surgeon (OBS) [13], and growing
algorithms [14]). For these methods, model selection is carried
out by evaluating the performance of different topologies on a
new set of examples (crossvalidation). The best model is the
one minimizing the generalization error on the crossvalidation
set. Unfortunately, crossvalidation presents a serious disadvan-
tage, especially when a limited data set is available. Saving
examples to crossvalidate a model reduces the data available
for configuring the parameters (thus impairing the efficiency of
learning). In such a case, all data should be used for training,
thereby making it necessary for the model selection and vali-
dation process to use criteria which estimate the generalization
ability of the neural model from the training data itself.

Of particular relevance, among criteria following this prin-
ciple, are the generalized prediction error (GPE) [8] and the
network information criterion (NIC) [15]. In this paper, we
introduce the final prediction error biased (FPEB) criterion
which extends the final prediction error (FPE) [16] to the case
of biased models.

GPE provides a trivial model selection in noise-free
applications by selecting the model with the minimal training
error. This procedure is not correct if the number of training
pairs is small. This limitation is solved by FPEB, which
introduces a correction term which is a function of the
number of training pairs.
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FPEB differs from NIC in that FPEB distinguishes between
noise-free and noise-affected cases to take advantage ofa
priori information. It is always computationally feasible, even
when NIC is ill-conditioned, and considers an early stopping
strategy to limit overtraining effects (overfitting caused by the
learning phase) in overdimensioned networks.

The problem of learning from examples can be formalized
as follows. Let be the unknown
function to be learned and the set containing the pairs

(1.1)

drawn from a stationary density function and generated
according to the classical signal-plus-noise model

(1.2)

In other words, is the generic actual measurable output,
corrupted by an independent and identically distributed (i.i.d.)
noise with zero mean and a variance which is generally
unknown.

Our goal is to find the function which best approximates
given (1.1) and a loss criterion [e.g., a mean square

error (MSE)]. The search for the best approximating function is
carried out within a hierarchical model structure. The model
structure considered in this paper contains
two-layered feedforward neural networks with inputs,
hidden units (characterized by a nonlinear differentiable ac-
tivation function, e.g., a sigmoidal-like function), and a single
linear output. The interest for such models derives from the
fact that, under weak hypotheses, they are universal function
approximators [17]. Each element is completely
defined by a column vector of parameters, which contains
all free parameters of the network (weights and biases in
our case). We will assume that the-dimensional vector
belongs to a differentiable manifold of parameters (if
the neural network is fully connected between layers then

). The model corresponding to a particular
will be denoted . We say that is biased if there does
not exist a such that . As a consequence, even in
the best case when the learning process provides the optimal
approximating function , we have that (see
also [18] for a detailed analysis of the bias/variance dilemma).
We consider as a simple example of model bias the problem
of learning the noise-free function defined in the
interval. We choose to be the MSE tending to infinity,
with subject to a uniform distribution and the model family

. The best approximating function
is such that .

In this paper we adopt (1.3) as the general error-based
criterion for configuring the neural parameters

(1.3)

where is a discrepancy or error function (e.g.
) and with . Minimization of

(1.3) with a learning procedure will provide a minimum,
dependent on the given . As a consequence, it seems
reasonable that as the number of pairstends to infinity,

should converge to an optimal parameter configuration
(for which ) yet to be defined.

The structure of this paper is as follows. Section II investi-
gates the asymptotic behaviors of and by describing the
elements to which the sequences converge.

The general criterion is derived by considering asymptotic
results and is tailored to neural networks. The section ends with
a brief description of Moody’s GPE. In Section III, results are
specialized to the case where and we obtain the
FPEB. On the basis of the effective number of parameters, the
criterion is then refined to take advantage ofa priori informa-
tion, namely, whether the application is noise free or not. Re-
lationships and differences between FPEB, GPE, and NIC are
derived. Finally, in Section IV, the effectiveness of the method
is demonstrated on examples of learning nonlinear functions.

II. THE GENERAL CRITERION

FOR SELECTION AND VALIDATION

A. Extending Asymptotic Results to Neural Networks

Let us define to be the subset of point(s) minimizing
the function

(2.1)

evaluated with respect to the probability density function
under the hypothesis of i.i.d. inputs. We might interpret

as the best average approximation of
given and .
The relationship between and is such that [19]

R1: when tends to infinity, converges
uniformly to zero with probability 1 in .

This convergence result implies that the set of accumulation
points of local/global minima of are, respectively, the
points of local/global minima of .

Several important results in system identification are based
on the asymptotic relationships between points minimizing
(1.3) and those minimizing (2.1). Results on convergence
and rapidity of convergence are well known under the strong
hypothesis that the true system belongs to the model family
[16] and, more specifically, to linear models. Results (valid
for modeling dynamical systems) have been extended in [20]
and [21] to cover the general case where the system does not
belong to the model. Now, by assuming that there exists a
unique global minimum and denoting with the Hessian
matrix (obtained by differentiating twice with respect to ),
it has been proved [19] that:
R2: if (where is the identity matrix and ), then

as tends to infinity and, for a sufficiently
large , is asymptotically normal (AsN) with
zero mean and covariance matrix

(2.2)

where

(2.3)

(2.4)

It can easily be proved thatR1 and R2 still hold when
considering feedforward neural networks, but the use ofR2
requires some additional care. The assumption of a unique
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point for in R2 is intended to confine the analysis to the
neighborhood of to which converges. In any case, it
should be noted that being in different global minima will
not modify the behavior of the entities present in (1.3) and
(2.1).

A second strong hypothesis ofR2requires to be positive
definite in the neighborhood of . If there are isolated minima
(i.e. for each of which there exists a safe neighborhood
satisfying the positive definite condition), thenR2 still holds.
On the other hand, when is singular, we cannot obtain
the inverse needed in (2.3). The problem can be overcome by
considering the Moore–Penrose pseudoinverse [30],
[31] and we can extend (2.3) as

(2.5)

where is an idem-
potent matrix. The pseudoinverse is the same as the inverse
when is nonsingular. In such a case, becomes the
identity matrix and (2.5) coincides with (2.3). The proof is
given in Appendix A. Such an extension is relevant, since it
allows the learning of functions from real data where (or
its estimate) is often singular (see Section IV).

A second aspect to be considered is the effect of training
time in estimating the parameter vectorin overdimensioned
networks (we do not knowa priori whether the chosen network
topology is overdimensioned to the application).

This problem does not arise in linear systems where no
training procedures are necessary and the best estimateis
generally simply computed offline in a single step according to
the linear regression theory [16]. This is not the case in neural
networks where the parameter configuration evolves during
training (being updated by the learning algorithm) and, in a
long training run, we have that , which
might be far from being a good estimate of any . This
problem has also been observed in [22].

Such a behavior is common with overdimensioned networks
where overtraining effects are evident (see Section IV). The
best estimate of is reached in correspondence with a finite
training time . To keep the effect of overtraining
under control, the stopping point for the training phase should
be carefully determined (e.g., by evaluating the network’s
performance on the test set [22]). If, however, no test sets
are available because of the shortage of data, then we should
also solve this problem. This will be done in Section III where
a strategy is implemented to determine (and therefore
the correct to be considered).

A further problem to be analyzed is the local minima
issue which can be experimentally overcome by using suitable
learning algorithms and stochastic minimization procedures
such as simulated annealing or genetic algorithms which
guarantee to reach a global minimum with probability one
(even if these methods are often computationally impractical).

B. The Criterion

The classical derivation [16] may now be followed by
introducing a figure of merit which takes into account the
complexity of a model. A natural criterion to validate a given

model (which in the following for ease of notation will be
indicated as ) is to consider how the estimate obtained
performs on the average

(2.6)

We can prove that the following relationships hold:

(2.7)

(2.8)

where is the matrix trace (see Appendix B for the proof).
By substituting , obtained from (2.8) in (2.7), expression
(2.6) can be approximated as

(2.9)

Expression (2.9) is of fundamental importance and needs to be
interpreted both under the validation and the selection aspects.

Validation Aspect:Expression (2.9) states that the averaged
expected performance of the model is approximately the sum
of the expected loss criterion and a second term, depending
on the characteristics of the noise and the sensitivity of the
estimate with respect to the parameters. Expression (2.9), once
given a trained model , validates it by providing a
measure of its generalization ability.

Selection Aspect:Expression (2.9) underlines the com-
promise between the model complexity and training error
performances. Obviously, the balance depends on the current
trained model. It is well known that by increasing the com-
plexity of the model, the training error will decrease. However,
the second term of (2.9), being the trace of a matrix of order

(and therefore dependent on the model complexity),
increases. The optimal model (selection aspect) is then the
element of for which ,
namely, the model minimizing the generalization error.

If a single run is taken into account then, as with the classic
analysis, we can replace the expectation of with
the only observation we have

(2.10)

Due to the simplification, all criteria coming from (2.10) pro-
vide only an approximation of the generalization ability of the
model and, as a consequence, limit the model validation in the
following analysis. Fortunately, the introduced approximation
does not impair the effectiveness of model selection, at least
for the considered structure, as proved in [15]. There, the
authors, by extending results given in [23], provide the NIC
criterion formally similar to (2.10). In its simple form, NIC
does not immediately allow the introduction of the concept
of an effective number of parameters (namely the effective
number of degrees of freedom used by the model to solve the
approximating task). However, in the case of additive noise
and a MSE discrepancy function, it can be shown to be related
to GPE, which does allow for such a concept.

Whenever the network degenerates to a submodel [15],
the effective number of parameters is defined by the limit
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case when tends to a critical value (which, although it
is theoretically correct, we experimentally determined to be
impractical from the application point of view). Furthermore,
NIC may be ill conditioned when the Hessian is singular,
thus impairing the effectiveness of the criterion. Finally, NIC
is evaluated in correspondence with, which is determined
during the long training run. We already indicated thatis
not necessarily a good estimate of. The criterion proposed
in this paper attempts to resolve such limitations.

C. A Different Approach: The Generalized Prediction Error

An interesting criterion for model selection and validation
different from (2.6) has been suggested in [8] where the author
introduces the prediction risk for training sets of size, with
input density equal to the empirical density defined by the
available training set

(2.11)

For such training sets, the inputs are held fixed but the
’s may vary according to the conditional probability density

. The criterion is then defined as the expected
validation set error for validation sets of size, in which the
unknown input density is replaced with that of the training
set . The criterion becomes

(2.12)

where is the weight decay [25] and the Moody’s
effective number of parameters. (2.12) generalizes the well-
known relationship valid for linear systems [24] to nonlinear
and biased models. In particular, for the case of the signal-
plus-noise model of expression (1.1), we have that .

Finally, the GPE becomes

GPE (2.13)

where

(2.14)

is the Hessian of the objective function andis the
matrix of the derivatives of the training error.

III. FPEB: EXTENDING FPE TO BIASED MODELS

In the following, we consider the case in which a sufficiently
large but finite number of data is given, thus making
effective results given in previous analyses. To take into
account the model bias, we must refine the signal-plus-noise
model of (1.2) by considering as the sum of two terms:
the approximating function and the distortion function

(3.1)

By invoking R1, when tends to infinity, (3.1) becomes

(3.2)

We define to be the punctual bias in .

In all subsequent analyses we will focus the attention on
the MSE loss criterion

(3.3)

The structure of the section is as follows. In Section III-A,
the final prediction error for biased models FPEB is introduced.
Different criteria can then be derived from the general one by
exploiting a priori knowledge (e.g., by knowing that data are
noise free). First, the criterion is specialized to the case of
pure punctual bias, as happens when data are not affected by
noise. The goal is to approximate a deterministic function.
Then, to cope with the fact that, in general, the punctual
bias is unknown (data are in this case affected by noise), we
consider an approximation which treats the punctual bias as a
random variable. This last approximation, even if particularly
appealing since it provides a criterion formally similar to FPE,
is a priori not correct because the bias is deterministic. By
relaxing this last assumption, the correct criterion may be
finally obtained by directly deriving it from the general one. In
Section III-B, it will be demonstrated that GPE may be related
to FPEB. Finally, in Section III-C, we will analyze the impact
of training time on the proposed criteria.

A. Evaluating the FPEB

Having chosen a loss function , we have to adapt the
general criterion to it. This requires computation of the trace
term present in (2.10). To this end, remembering that

and by indicating

(3.4)

as the column vector of partial derivatives of the error
with respect to the genericth parameter component, the
matrix of (2.4) can be rewritten as

(3.5)

with

Now, by remembering that and are i.i.d. random variables,
we obtain that

(3.6)

(3.7)

We next compute By differentiating (2.1) twice

(3.8)
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all terms being evaluated at. If this is extended to the general
case where may be singular, the trace term present in
(2.10) can be rewritten as

(3.9)

(3.10)

We define to be the effective number of parameters used by
the model to fit the data (the rank is full whenever )
and to be a virtual variance associated with the bias. If

(as may happen during training) we should consider
instead of .

Finally, we can rewrite (2.10) as

(3.11)

For large we can substitute in (3.8) the expectation
with its empirical value (now evaluated at ) and
an estimate of the effective number of parameters can be
computed as

(3.12)

(3.13)

evaluated at . We can further approximate (3.12) to reduce the
computational complexity in the evaluation ofby considering
the quasi-Newton Hessian [i.e., neglecting the second term in
(3.8) and, therefore, in (3.13)]: becomes the approximated

and the approximated effective number of parameters is

(3.14)

The effective number of parameters as defined in (3.14) has
also been suggested in [26] under the hypothesis of a non-
singular quasi-Newton Hessian. Unfortunately, this is not the
case in real applications, where the matrix is generally singular
[see also observations following (2.10)]. To overcome such
problems, different authors (see [27] for instance) evaluate the
effective number of parameters by counting the number of
non-null weights and biases. This procedure is definitely not
correct and either (3.12) or (3.14) should be used. Moreover,
since (3.14) does not always provide a good approximation of
the effective number of parameters, (3.12) should be used in
preference. The two entities coincide when the term given in
(3.13) is null. This happens when dealing with linear models
or when the error surface has a relatively constant curvature
in the neighborhood and/or the network fits the data well.
If the punctual bias is null when tends to infinity, then

and we say that the real function to be approximated
almost belongs to . In a noise-free environment this always
happens by allowing the number of hidden units to increase
freely, since the chosen neural models are universal function

approximators [18]. The second term in (3.13) may also
become null with reduced in overdimensioned models if
the network overfits the training data in the long training run
(see results of Section IV).

1) The Criterion in the Noise-Free Case:Let us now com-
pare (2.12) with (3.11). Whenever the process generating the
data is not affected by noise , the model selection, as
suggested by Moody [(2.12)], is unrealistic since it is based
only on the training error. Equation (3.11) provides a more
robust model selection by considering a corrective term, which
depends on the complexity of the model and the number of
data samples. The criterion in the pure bias case directly
derives from (3.11)

FPEB (3.15)

where the effective number of parameters is given either in
(3.12) or (3.14) and comes from (3.10) by substituting
expectations with the empirical quantities of (3.7) and (3.13).
It should be noted that, in a noise-free case, we simply have

: a known quantity.
As a simple example let us consider , as defined in (3.3),

with examples uniformly extracted from the interval,
and the model family .

We have seen that the best approximation is . From
(3.4) we have that and therefore, from (3.7)

. From (3.12) and
. Equation (3.15), therefore, finally provides the

criterion

FPEB

2) The Criterion in the Noise-Plus-Bias Case:In the case
of noise plus distortion, if the variance of the noise is
known, the analysis is straightforward and we have to add
to criterion (3.15). Conversely, if the variance of the noise is
unknown, it must be estimated. By definition, we have that

(3.16)

with . By considering (2.8) with terms
coming from (3.10) and (3.16), we have that

(3.17)

and, therefore, the estimate becomes

(3.18)

By substituting (3.18) in (3.11), we obtain the expression for
the criterion in the noise-plus-bias case

FPE (3.19)

where FPE is the final prediction error term structurally
similar to the well-known FPE for unbiased models. Even if
the expression is similar to FPE, it should be noted that now
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contains also the bias contribution (and thus FPEFPE).
When grows indefinitely, the training error becomes a good
estimate of the generalization error.

The criterion suggested in (3.19) relies on the hypothesis
that and are available or estimable. If this is not the
case, we can address the problem by assuming that also the
bias is an i.i.d. variable with zero mean and an unknown
variance. The hypothesis relies on the fact that it is reasonable
to assume both positive and negative punctual biases with
a null expectation and that the effect caused by a punctual
bias added to the noise is equivalent to a realization of a
different noise with an increased variance [this is due the
approximation introduced in (2.9) when deriving (2.10)]. The
analysis is now straightforward by simply considering the
additive contribution in the two random variablesand
in (3.1) and (3.2), whose effect is equivalent to a random
variable with zero mean and variance.
Without presenting all details, we can repeat the procedure
accomplished in Section III-A. Briefly, (3.11) becomes

(3.20)

with

(3.21)

As a consequence, the final criterion becomes formally similar
to FPE

FPEB FPE (3.22)

where accounts both for the noise on data and the bias.
The effective number of parameters is, again, either that of
expression (3.12) or (3.14). Whenever the model is unbiased,
we have that and does not contain any
bias contribution and the criterion reduces to FPE.

The hypothesis of assuming the bias as a random variable,
even if appealing, is not correct from a theoretical point of
view and we should consider (3.19). Without specializing the
effects of noise and bias, we can still derive from (2.10) a
criterion formally similar to NIC.

By substituting (2.5) in (2.10) and expectations with empir-
ical quantities, the criterion becomes

FPEB (3.23)

where

(3.24)

and

(3.25)

Once again, the number of parameters used by the model is
that of (3.12). The validity of the presented criteria relies on
the validity of substituting expectations with empirical values.
In other words, this is equivalent to assuming that (or

) can be reasonably estimated from the available data.

Of course, if is sufficiently large, then the approximation
holds because of the law of large numbers. The validity
of estimating the covariance matrix from the available data

for finite was studied in [16], with respect
to ARX models. By using Monte Carlo simulations, the
authors obtained good approximations ofwith only 50 data
instances. Similar results were also obtained in [28]. Monte
Carlo experiments should also be performed for the case of
nonlinear systems, to determine experimentally the impact of
finite on . Experiments presented in Section IV prove
the validity of the framework outlined in this paper. It seems,
therefore, reasonable to assume that we would obtain a good
approximation of with only a few tens of data.

B. Relationships Between Moody’s GPE and FPEB

Under Moody’s assumptions, we can estimate the general-
ization error of (2.10) with the one provided in (2.12)

(3.26)

and therefore, from (3.10) and (3.16), we obtain a relationship
among and

(3.27)

Equations (3.17) and (3.27) constitute a linear system whose
solution gives the estimates

(3.28)

and, therefore, (3.11) becomes

GPE (3.29)

which is equivalent to the GPE given in (2.13), with (3.28) as
the estimate of variance.

Finally, we could use the estimates of (3.28) to reformulate
(in this case) the FPEB

FPEB FPE (3.30)

where FPE . Equation (3.30)
states that, under Moody’s assumptions, the final prediction
error in the biased case is structurally equivalent to FPE,
corrected by a factor depending on the effective number of
parameters and on the bias degree.

C. The Impact of Training Time in the Use of FPEB

In all these criteria, whenever the network is overdimen-
sioned with sufficient degrees of freedom with respect to the
given application, the term decreases asymptotically with
training epochs. On this basis, we should identify the optimal
network as the one obtained after infinite training time.

With respect to a simple gradient based procedure, and
under the hypothesis that the learning coefficient tends to
zero and that the number of training epochs tends to infinity,
Amari, in [15], proved that for a sufficiently large training
time has a Gaussian distribution whose expectation
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is a point minimizing with variance proportional to the
learning coefficient. The proof is only valid for gradient
descent algorithms and does not imply that the best estimate
of is obtained after infinite training but simply that, with a
resampling training procedure, we will converge to a point
minimizing . In fact, it is not true that after infinite
training epochs we necessarily end in a good minimum (i.e.,

may be a bad estimate of ) because of overtraining. We
already discussed the issue in observations following (2.5).
The problem can be solved by implementing an early stopping
strategy based on the effective number of parameters.

Experimentally, we have seen that training should be
stopped whenever converges and/or is constant
or increases. The rationale behind this is thatrepresents the
effective number of degrees of freedom used by the model
to infer the unknown function from the input/output pairs.

evolves during the early stages of training as if it were
driven by an internal growing/optimizing algorithm, which
provides the appropriate degrees of freedom. Heuristically,
when converges and is constant or increases, the
training procedure needs to be stopped and, at that time, the
associated entities (e.g., , etc.) should be used in the
criteria. A different theory, dealing with the determination of
the optimal stopping point, has been developed in [32] where
it has been proven that the optimal point belongs to a

neighborhood of . The two criteria are equivalent
since, in such a neighborhood, (2.7), (2.8) and the following
relationships are valid.

IV. L EARNING INPUT/OUTPUT RELATIONSHIPS

In this section we apply the criteria proposed above to
determine the optimal neural topology in three applications.

The first application deals with a smooth function in a noise-
free set up. The second application also refers to a noise-free
case but, in this example, the function to be learned is quite
irregular and the data do not contain sufficient information to
properly configure the neural model. In the third application,
the function to be learned is affected by noise.

Selection of the optimal topology according to FPEB re-
quires the training of several hierarchical models (the hierarchy
can be obtained by increasing the number of hidden units). Ob-
viously, the training procedure is time consuming and training
a large subset of the model structure may be computationally
infeasible. Heuristics can therefore be used to guide the search
toward the determination of a reduced subset of models. To
this end, two different approaches can be found in [2] and
[29]. Here, we implemented the second one. Briefly, instead
of training and evaluating the criterion for each different neural
topology, we apply an OBD-like technique [25] to connections
ending in the output neuron of a strongly overdimensioned
topology. The hidden layer complexity can be reduced (thus
exploring the hierarchy) by removing the connectio,n after
which the increase in MSE is minimized. A new topology is
given and the criterion can be applied without requiring a new
training phase. This OBD-like process iterates until the number
of hidden units is equal to one. The error in estimating the
criterion without any effective training increases as the number

of hidden neurons decreases, but this strategy provides useful
guidelines in reducing the number of models to be considered.
Generally, in a few iterations we can identify a small set of
candidate topologies containing the optimal one.

Training was implemented with an optimized Leven-
berg–Marquardt learning algorithm. In the rest of the section,
we will compare several criteria which are derived from FPE
or FPEB, by considering the novel definition of the effective
number of parameters. More specifically, the following are
the criteria.

1) FPE: the criterion is the well-known FPE for which
is the number of nonnull degrees of freedom of the
network;

2) FPE1: the criterion is the FPE for which the number
of parameters has been evaluated according to (3.14)

(we consider the approximated version of).
3) FPE2: the criterion is the FPE for which the number

of parameters has been evaluated according to (3.12)
(we consider the correct).

4) FPEB: the criterion is the one given in (3.15) for the pure
bias case and the one in (3.23) for the most general case
with the approximated effective number of parameters
from (3.14).

5) FPEB2: the criterion is the one given in (3.15) for the
pure bias case and the one in (3.23) for the general case
with the correct effective number of parameters from
(3.12). This criterion is the most accurate one.

A. Example 1: A Reduced-Bias Case

Our goal is to approximate the nonlinear function

(4.1)

For this example, the training set was composed of
pairs uniformly extracted from the interval. The func-
tion is smooth and the training set rich enough to guarantee
that (4.1) almost belongs to the neural model family. No noise
was added to the data: this is a pure bias case.

The heuristic outlined above was used to consider topolo-
gies with hidden units ranging from one to seven. For each
neural model we have to apply the training procedure and
then compute the criteria. According to the early stopping
strategy, we monitored the evolution of the correct and the
approximated effective number of parameters during training
time. The learning phase lasted for 1000 epochs (each epoch
implements two minimizations of the training error). In the
following plots, indicates the number of hidden units and

the asymptotic value (with respect to the training epochs)
assumed by .

The evolution of the correct effective number of parameters
for each topology of the subset is given in Fig. 1. We can
immediately see that with , the network utilizes all
the degrees of freedom available, whereas for networks with
higher complexity, the effective number of parameters is less
than the maximum (for hidden neurons we have
weights and biases). The behavior of the models
with is such that first evolves during the initial
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Fig. 1. The correct effective number of parameters.

Fig. 2. The approximated effective number of parameters.

stages of learning, before reaching a steady state (note that
for the experiment the model degenerated to a model
with lower complexity). The evolution of the approximated
effective number of parameters is given in Fig. 2.

The approximation does not consider the term of ex-
pression (3.13). Since the function almost belongs to the neural
model family, after a small number of training epochs we have
that and the correct and the approximatedcoincide
(as happens) in the long training run.

Comparisons among different criteria are given in Fig. 3
for the case where we indicated the MSE validation
with MSEval and MSE training with MSEtr. We can see that,
despite the approximation leading to (2.10), FPEB and FBEB2
are reasonable estimates of the MSE validation (evaluated over
the whole definition interval) while all other criteria provide
a worse estimate. The effective number of parameters and
the criteria have been determined with the early stopping
strategy suggested in Section III-C. The most accurate criteria
are then compared in Fig. 4 for neural models with hidden
units varying from one to five. For all models, FPEB2 provided
a good estimate of the generalization ability, while all criteria
selected the model with , in full agreement with the

Fig. 3. Comparing different criteria for the model withnh = 2.

Fig. 4. Different criteria for the models from one to five hidden units.

validation plot. Actually, there is a very small improvement
in performance when increasing the number of hidden units,
but we are interested in the smallest model keeping the same
performance. The training data (circled), the function to be
learned, and the best neural model selected by the criteria are
plotted in Fig. 5.

B. Example 2: A High-Bias Case

In this experiment, we drastically reduced the number of
training data to 32 and enlarged the definition interval to

. Data was regularly sampled from the function

(4.2)

and no noise was added. This function is definitely more
irregular than the previous one (see Fig. 11). The OBD-like
procedure identified the interval from one to ten hidden units.
To monitor overtraining effects, we have to track the evolution
of the correct (Fig. 6) and the approximated (Fig. 7) effective
number of parameters. In the figures, and increase from
the bottom to the top of the plots. It can be seen that now there
is a difference in the estimated effective number of parameters
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Fig. 5. The training data, the real function and the best neural model.

Fig. 6. The correct effective number of parameters.

Fig. 7. The approximated effective number of parameters.

Fig. 8. Evolution of the criteria in the long training run for the model with
nh = 5.

Fig. 9. Different criteria for the models from four to nine hidden units.

for the case (we have for the correct and
for the approximated one in the long training run). Since

for high values of the network is overdimensioned, the
stopping points suggested by the two estimates are different.
For overdimensioned models, the best stopping point is at the
early stages of learning where the correct and the approximated
effective number of parameters differ. we should, therefore,
always consider the correct.

In Fig. 8, the evolution of different criteria over the training
time for the case is plotted on a semilog scale. We
realize, once more, that the FPEB’s provide better estimates
of the generalization ability of the model (again there is
a discrepancy between FPEB and FPEB2 because of the
difference in ). FPE, itself, is always the worst criterion.
We determined the best criterion FPEB2 and FPE (the worst
one) on different network topologies with hidden units varying
from four to nine. Results are given in Fig. 9. FPE selected the
model with five hidden units, while FPEB2 selected the one
with six. The model with eight hidden units almost provides
the same performance (according to the criterion) as the one
with six, but it requires a more complex model. On the other
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Fig. 10. The training data, the real function, and the best neural model.

Fig. 11. Overtraining effects for the model with ten hidden units.

hand, the criterion will penalize such a model if the model
complexity is overdimensioned with respect to the number of
data elements. The selected model is then the one which best
solves the performance/model complexity tradeoff according
to (3.23), even if this may imply the selection of a model with a
high bias (see Fig. 10). Validation results support the selections
made and prove the efficacy of estimating the validation error
with FPEB2. The best approximation, as suggested by the
criterion, is given in Fig. 10 where the training data are circled,
the real function of (4.2) is plotted in a continuous line, and
the best estimate with a dotted line.

If the learning termination point is not correctly selected
(e.g., according to the early stopping strategy based onand
the criteria), we could easily end up with overtrained networks.
An example is the plot of Fig. 11, obtained after only 400
training epochs for the topology. We can see that
after too much training is a bad estimate of .

C. Example 3: Noise and Bias

As a third example, we consider the function

(4.3)

as suggested in [17]. A set of ’s were uniformly

Fig. 12. The correct effective number of parameters.

Fig. 13. Evolution of the criteria in the long training run for the model with
nh = 4.

extracted from the interval and the associated’s were
corrupted with a Gaussian noise with zero mean and
variance. We assume that the process generating the data is
unknown. Since we do not havea priori knowledge, we have
to consider the most general criterion given in (3.23). The
same heuristic suggests examination of models with from
one to five hidden neurons. As with previous cases, we
monitored the evolution of the correct effective number of
parameters. Fig. 12 shows the 1–400 training epoch interval
for models with from to three hidden units. We can see
that for the case reaches one after some training
epochs and then it converges by using all the degrees of
freedom provided by the model (i.e., four). The model with
two hidden units uses only six parameters out of seven, while
in the case of , decreases and converges to the
steady state with eight parameters out of ten. It is easy to
determine the learning termination points for such topologies.
The behavior of the most relevant criteria over the training
run is given in Fig. 13 for the case . The behavior
of the criteria with respect to different neural topologies
(from one to five hidden units) are plotted in Fig. 14. We
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Fig. 14. Different criteria for the models from one to five hidden units.

Fig. 15. The training data, the real function, and the best neural model.

can see that the networks with two and four hidden units
provide the same performance. Since we choose the simplest
model when determining the complexity/performance tradeoff,
we consider only the network with two hidden units. The
best estimate is given in Fig. 15 (training data: circled, real
function: continuous line, best approximation: dashed line).

V. CONCLUSION

In this paper we presented a theoretical framework which
provides effective criteria to select and validate neural topolo-
gies for learning an unknown function. A generalization of the
FPE criterion to biased models has been introduced, which
is shown to be related to the one suggested by Moody.
The criteria solve problems posed by NIC. This has been
achieved by suitably estimating the covariance matrix of
the parameters with the Moore–Penrose pseudoinverse by
introducing a novel definition of the effective number of
parameters and by implementing an early learning termination
strategy which helps prevent overtraining.

APPENDIX A

To calculate the parameter covariance matrix
of (2.3) and (2.5) we need to expand

around (to which converges) with Taylor and evaluate the
expansion at . Since (the learning procedure
ends in a minimum) the expansion provides

(A.1)

where each component of thevector is within a sphere of
radius centred on .

In the limit, when tends to infinity tends to and
converges uniformly to with probability 1 in from R1.
Under the regularity hypothesis, this convergence also holds
for the Hessians and therefore converges to (see [19]
and [20] for the proof). (A.1) thus becomes

(A.2)

(A.2) constitute a linear system whose Moore–Penrose solution
in the mean square sense is [30], [31]

(A.3)

where is the identity matrix, is an
idempotent matrix orthogonal projector onto the
column/row space of , and is an arbitrary -dimensional
column vector.

From simple manipulations and remembering that
, we can write that

(A.4)

The second term of (A.4) can be neglected since
is asymptotic to , which is null

(see also [15]) and (2.5) is proved. When is
nonsingular we have simply that and we obtain (2.3).

APPENDIX B

With respect to (2.6) we note that and are not
known, since we do not know the true data. Such quantities
will therefore be approximated by using Taylor expansions in
the Lagrange notation around the minimum(to which will
converge) of . Recalling that and evaluating
the expansion for , we obtain

(B.1)

where is a point whose components lie within a sphere of
radius centered on . We recall that (A.1) holds

(B.2)

We expand around , consider as
given by (B.2), and evaluate the expansion for

(B.3)
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where is a convenient point similar to and . We now take
expectations of (B.1) and (B.3) by considering the asymptotic
relationships given byR1and expression (2.2), thus obtaining

(B.4)

(B.5)

being and the matrix trace. From (2.1) we
recall that

(B.6)

From (B.1) to (B.6), we obtain finally

(B.7)

(B.8)

from which (2.7) and (2.8) follow by noting that
.
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