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FPE-Based Criteria to Dimension
Feedforward Neural Topologies

Cesare Alippi,Member, IEEE

Abstract—This paper deals with the problem of dimensioning a Examples include reconstructing unknown functions [1], time

feedforward neural network to learn an unknown function from  geries forecasting [2], and mode”ng very Comp|ex processes
input/output pairs. The ultimate goal is to tune the complexity 3].

of the neural model with the information present in the training The det inati f del which imat f
set and to estimate its performance without needing new data € Gelermination of a moael Which approximates & iunc=

for cross-validation. For generality, it is not assumed that the tion, given a set of input/output pairs, comprises three distinct
unknown function belongs to the family of neural models. A phases: model selection (to choose the correct complexity of
gene_ralizatio_n of the final p_rediction error to biased r_nodels is the model), model parameterization or learning (to determine
provided, which can be applied to learn unknown functions both e harameters of the model), and model validation (to evaluate

in noise free and noise affected applications. This is based on a . - -
new definition of the effective number of parameters used by the the generalization ability of the model). The model with the

neural model to fit the data. New criteria for model selection are Optimal generalization ability is then chosen to solve the
introduced and compared with the generalized prediction error function-approximation task.

and the network information criteria. The function-approximation problem has been widely
Index Terms—FPE, learning from samples, model selection, addressed in the literature, usually with respect to linear
neural networks. models under the assumption that the function to be learned

is linear or quasilinear. If this is not the case, the family of
approximation models must be extended to include nonlinear

NOMENCLATURE
models such as neural networks [4]. A number of powerful

o Neural network parameters vector. neyral techniques have been developed, such as radial-basis
¢ Trained parameters vector. functions [5], [6], mixture of Gaussians [7], feedforward
6° Optimal parameters vector. [8], and recurrent [9] topologies.
Vi Training error function. Several criteria have been suggested to select an appro-
|4 Error function. priate neural topology by reducing/optimizing the number of
N Number of training data. neurons/weights in the network (e.g., optimization based on
zN Training data set. spectral decomposition [10], covariance matrix [11], optimal
(z,9) Training pair. brain damage (OBD) [12], surgeon (OBS) [13], and growing
y(9) Neural network characterized I8y algorithms [14]). For these methods, model selection is carried
€ Difference between the real value andut by evaluating the performance of different topologies on a

the neural outputy — (). new set of examples (crossvalidation). The best model is the
P covariance matrix of. one minimizing the generalization error on the crossvalidation
A’ Gradient of A. set. Unfortunately, crossvalidation presents a serious disadvan-
A Hessian ofA. tage, especially when a limited data set is available. Saving
At Moore-Penrose pseudoinversef €xamples to crossvalidate a model reduces the data available
U = % gradient w.r.té. for configuring the parameters (thus impairing the efficiency of
P Orthogonal projector onto the columrearning). In such a case, all data should be used for training,

space ofV”. thereby making it necessary for the model selection and vali-
Pett Moody’s effective number of dation process to use criteria which estimate the generalization

parameters. ability of the neural model from the training data itself.
I Alippi’s effective number of _Of particular relevance, among criteria following this prin-

parameters. ciple, are the generalized prediction error (GPE) [8] and the
E[A] = %2?21 A; empirical average ofl. network information criterion (NIC) [15]. In this paper, we

introduce the final prediction error biased (FPEB) criterion
which extends the final prediction error (FPE) [16] to the case
of biased models.
EARNING an input-output relationship from a set of Gpg provides a trivial model selection in noise-free
value pairs is a fundamental problem in many fieldgppiications by selecting the model with the minimal training
Manuscript received November 15, 1995; revised September 24, 1998. Taror. This procedure is not correct if the number of training
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FPEB differs from NIC in that FPEB distinguishes betweeé should converge to an optimal parameter configurafion
noise-free and noise-affected cases to take advantage dfor which y° = §(#°,x)) yet to be defined.
priori information. It is always computationally feasible, even The structure of this paper is as follows. Section Il investi-
when NIC is ill-conditioned, and considers an early stoppingates the asymptotic behaviors W6, andé by describing the
strategy to limit overtraining effects (overfitting caused by thelements to which the sequences converge.
learning phase) in overdimensioned networks. The general criterion is derived by considering asymptotic
The problem of learning from examples can be formalize@sults and is tailored to neural networks. The section ends with
as follows. Lety = f(z) | z € ®*,7 € R be the unknown a brief description of Moody's GPE. In Section Ill, results are
function to be learned and”" the set containing thév pairs specialized to the case whel@, ¢) = 2 and we obtain the
FPEB. On the basis of the effective number of parameters, the
(@1,),- 5 (2, ) (1) criterion is then refined to take advantageaggriori informa-
drawn from a stationary density functiofi and generated tion, namely, Whether the app|icati0n iS noise fl’ee or not. Re-
according to the classical Signa|_p|us_noise model IationShipS and differences between FPEB, GPE, and NIC are
derived. Finally, in Section IV, the effectiveness of the method
vi =i+ ¢ = f(xi) + ¢ (1.2) is demonstrated on examples of learning nonlinear functions.

In other words,y; is the generic actual measurable output, Il. THE GENERAL CRITERION

corrupted by an independent and identically distributed (i.i.d.) FOR SELECTION AND VALIDATION

noise( with zero mean and a variance which is generally

unknown. A. Extending Asymptotic Results to Neural Networks

_ Qur goal is to find the func_tlogo which best approximates Let us defineD C © to be the subset of point(s) minimizing

7 given (1.1) and a loss criterioly [e.g., a mean square 4o function

error (MSE)]. The search for the best approximating function is _ )

carried out within a hierarchical model structuv2 The model V(8) = E[Vy(8,Z™)] = E[I(6, )] (2.1)
structureM = {M;}, k € N considered in this paper containsvaluated with respect to the probability density function
two-layered feedforward neural networks with inputs, & A under the hypothesis of i.i.d. inputs. We might interpret
hidden units (characterized by a nonlinear differentiable age = §(6°,z),6° € D as the best average approximation of
tivation function, e.g., a sigmoidal-like function), and a singlg given Z% and V.

linear output. The interest for such models derives from the The relationship betweel and Vy is such that [19]

fact that, under weak hypotheses, they are universal functiRn: when NV tends to infinity, Vi (8, ZV) — V() converges
approximators [17]. Each elemelf;, = (6, x) is completely uniformly to zero with probability 1 inD.

defined by a column vector of parametérswhich contains  This convergence result implies that the set of accumulation
all free parameters of the network (weights and biases points of local/global minima ofi’y are, respectively, the
our case). We will assume that thedimensionalé vector points of local/global minima o#/.

belongs to aC* differentiable manifold of paramete® (if Several important results in system identification are based
the neural network is fully connected between layers hen on the asymptotic relationships between points minimizing
k(n+2)+1). The model corresponding to a particubae © (1.3) and those minimizing (2.1). Results on convergence
will be denotedM;.(#). We say that\l,. is biased if there does and rapidity of convergence are well known under the strong
not exist af such thatM(#) = y. As a consequence, even irhypothesis that the true system belongs to the model family
the best case when the learning process provides the optifa@] and, more specifically, to linear models. Results (valid
approximating function/’, we have thaf|y — 4°||v, # 0 (see for modeling dynamical systems) have been extended in [20]
also [18] for a detailed analysis of the bias/variance dilemma)nd [21] to cover the general case where the system does not
We consider as a simple example of model bias the problésslong to the model. Now, by assuming that there exists a
of learning the noise-free functian= = defined in thg—1,1]  unique global minimun®® and denoting with’”’ the Hessian
interval. We choosé’y to be the MSEN tending to infinity, matrix (obtained by differentiating” twice with respect t@),

with z; subject to a uniform distribution and the model familyt has been proved [19] that:

M, = {y = a,a € R}. The best approximating functionR2:if V" > &I (wherel is the identity matrix and > 0), then

y° = 0 is such that|7 — y°|| = 1/3 # 0. VN(f—6°) — 0 as tends to infinity and, for a sufficiently
In this paper we adopt (1.3) as the general error-basgdlge N /N (6 — 6°) is asymptotically normal (AsN) with
criterion for configuring the neural parameters zero mean and’ covariance matrix
o gty L N ” L VN (6 — 6°) = AsN(0, Py) (2.2)
(6, )—N;m) (13 Lhere
- i pon1—1 /" /poN1—1
wherel(-,-) is a discrepancy or error function (elgf, ¢;) = Po = [V7(6 )/] OQ[VN(Q )]/ Y NNT (2:3)
&) and¢; = y; — i with § = (6, ;). Minimization of Q= NE[(VA(67, 27 )(Va(67,27)7]  (2.4)
(2.3) with a learning procedure will provide a minimufh It can easily be proved thaR1 and R2 still hold when

dependent on the givew™. As a consequence, it seemgonsidering feedforward neural networks, but the us&af
reasonable that as the number of paW¥stends to infinity, requires some additional care. The assumption of a unique
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point for V in R2is intended to confine the analysis to thenodel (which in the following for ease of notation will be
neighborhood off° to which 6 converges. In any case, itindicated asMy) is to consider how the estimate obtained
should be noted that being in different global minima wilperforms on the average
not modify the behavior of th& entities present in (1.3) and oA
o P &9 IO = V(). 26)

A second strong hypothesis B2requiresV’” to be positive We can prove that the following relationships hold:
definite in the neighborhood éf . If there are isolated minima

_ _ 1 _
(i.e. for each of which there exists a safe neighborhood E[V(8)] zV(90)+ﬁtr([v”(9°)PP9]) 2.7)
satisfying the positive definite condition), th&® still holds. o ~ 1 ~

On the other hand, whel®” is singular, we cannot obtain EVn(6,Z™M)] =V (6°) - ﬁtr([V”(m)PPe]) (2.8)

the inverse needed in (2.3). The problem can be overcome b%/ ) , .
considering the Moore—Penrose pseudoinvéréed (6) [30], Wheretr is the matrix trace (see Appendix B for the proof).
[31] and we can extend (2.3) as By substitutingl’(6°), obtained from (2.8) in (2.7), expression

(2.6) can be approximated as
PPy =V"H(0)QV"*(6° 2.5 . . 7
’ EIRVE) 29) J(My) = E[V(0)] ~ E[Vx(0,Z™)] + %tr([V”(QO)PPg]).
where P = V"+(§°)V"(6°) = V" (6°)V"+(#°) is an idem- (2.9)
potent matrix. The pseudoinverse is the same as the inverse
when V" (#°) is nonsingular. In such a casg, becomes the Expression (2.9) is of fundamental importance and needs to be
identity matrix and (2.5) coincides with (2.3). The proof ignterpreted both under the validation and the selection aspects.
given in Appendix A. Such an extension is relevant, since it Validation AspectExpression (2.9) states that the averaged
allows the learning of functions from real data whéf& (or expected performance of the model is approximately the sum
its estimate) is often singular (see Section V). of the expected loss criterion and a second term, depending

A second aspect to be considered is the effect of trainiog the characteristics of the noise and the sensitivity of the
time in estimating the parameter vectbin overdimensioned estimate with respect to the parameters. Expression (2.9), once
networks (we do not know priori whether the chosen networkgiven a trained model\/;(¢), validates it by providing a
topology is overdimensioned to the application). measure of its generalization ability.

This problem does not arise in linear systems where noSelection AspectExpression (2.9) underlines the com-
training procedures are necessary and the best estfifidge promise between the model complexity and training error
generally simply computed offline in a single step according feerformances. Obviously, the balance depends on the current
the linear regression theory [16]. This is not the case in neuttdined model. It is well known that by increasing the com-
networks where the parameter configuration evolves duriptexity of the model, the training error will decrease. However,
training (being updated by the learning algorithm) and, in the second term of (2.9), being the trace of a matrix of order
long training run, we have thditm, ... é(ttr) = #°, which (px x pi) (and therefore dependent on the model complexity),
might be far from being a good estimate of affyc D. This increases. The optimal model (selection aspect) is then the
problem has also been observed in [22]. element;, of M for which J(My) < J(My) | My € M,

Such a behavior is common with overdimensioned network@mely, the model minimizing the generalization error.
where overtraining effects are evident (see Section 1V). Thelf a single run is taken into account then, asAwith the classic
best estimate of° is reached in correspondence with a finit@nalysis, we can replace the expectationVaf(¢, Z™¥) with
training time t,, = . To keep the effect of overtrainingthe only observation we have
under control, the stopping point for the training phase should O 1 _
be carefully determined (e.g., by evaluating the network's /(M) = Vy(8,2%) + ~ wVepe).  (2.10)

performance on the test set [22]). If, however, no test Se[BS

are available because of the shortage of data, then we shouglz o the simplification, all criteria coming from (2.10) pro-

also solve this problem. This will be done in Section IlI wherg' only an approximation of the generalization ability of the

L . - model and, as a consequence, limit the model validation in the
a strategy is implemented to determiig = ¢ (and therefore . . . o

= . following analysis. Fortunately, the introduced approximation
the correctf to be considered).

A further problem to be analyzed is the local minim does not impair the effectiveness of model selection, at least

. . : : : E??r the considered/ structure, as proved in [15]. There, the
issue which can be experimentally overcome by using suitable

learning algorithms and stochastic minimization procedurggthors’ by extending results given in [23], provide the NIC

such as simulated annealind or genetic aldorithms whi& iterion formally similar to (2.10). In its simple form, NIC
g org - a9 . oes not immediately allow the introduction of the concept

guarar_ltee to reach a global minimum W'.th prol_aablllty ONSt an effective number of parameters (namely the effective
(even if these methods are often computationally |mpract|caﬁl:|mber of degrees of freedom used by the model to solve the
o approximating task). However, in the case of additive noise
B. The Criterion and a MSE discrepancy function, it can be shown to be related

The classical derivation [16] may now be followed byo GPE, which does allow for such a concept.

introducing a figure of merit which takes into account the Whenever the network degenerates to a submodel [15],

complexity of a model. A natural criterion to validate a giverthe effective number of parameters is defined by the limit
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case whend tends to a critical value (which, although it In all subsequent analyses we will focus the attention on
is theoretically correct, we experimentally determined to kibe MSE loss criterion

impractical from the application point of view). Furthermore,

NIC may be ill conditioned when the Hessian is singular, Vn(8,ZN) = MSE 1 Z 2 (3.3)
thus impairing the effectiveness of the criterion. Finally, NIC 2 2N

is evaluated in correspondence with which is determined
during the long training run. We already indicated tiais
not necessarily a good estimate@f The criterion proposed
in this paper attempts to resolve such limitations.

The structure of the section is as follows. In Section IlI-A,
the final prediction error for biased models FPEB is introduced.
Different criteria can then be derived from the general one by
exploiting a priori knowledge (e.g., by knowing that data are
noise free). First, the criterion is specialized to the case of
pure punctual bias, as happens when data are not affected by

An interesting criterion for model selection and validationgjse. The goal is to approximate a deterministic function.
different from (2.6) has been suggested in [8] where the authfiien, to cope with the fact that, in general, the punctual
introduces the prediction risk for training sets of si¥ewith  pias is unknown (data are in this case affected by noise), we
input density equal to the empirical density defined by thénsider an approximation which treats the punctual bias as a

C. A Different Approach: The Generalized Prediction Error

available training set random variable. This last approximation, even if particularly
;N appealing since it provides a criterion formally similar to FPE,
Q== > 8z — ). (2.11) is a priori not correct because the bias is deterministic. By

relaxing this last assumption, the correct criterion may be
finally obtained by directly deriving it from the general one. In
yi's may vary according to the conditional probability densitp€ction 1ll-B, it will be demonstrated that GPE may be related
P(y | z:). The criterion is then defined as the expecte FPEB. Finally, in Section 1lI-C, we will analyze the impact

validation set error for validation sets of si2& in which the ©°f training time on the proposed criteria.
unknown input density? is replaced with that of the training

For such training sets, th& inputs are held fixed but the

set(Y. The criterion becomes A. Evaluating the FPEB
5 Det (7) Having chosen a loss functioky, we have to adapt the
ElVilvar = E[Viliain +0 N (2.12) general criterion to it. This requires computation of the trace

term present in (2.10). To this end, remembering that

where v is the weight decay [25] ang.; the Moody’s pc,e) 4 ¢ and by indicating

effective number of parameters. (2.12) generalizes the wef
known relationship valid for linear systems [24] to nonlinear . de
and biased models. In particular, for the case of the signal- V(z,6%) = do

plus-noise model of expression (1.1), we have that= \,.
Finally, the GPE becomes as the column vector of partial denvatw% of the error
with respect to the generiith parameter component, thg

GPH~) = Va(6) + &QPer\(TW) (2.13) matrix of (2.4) can be rewritten as

where Q = NE[V{V{T] (3.5)
Pe = tr(TULTT) (2.14) with

(3.4)

g=0~

U is the Hessian of the objective function aifids the N x p , 1 — 1 —
matrix of the derivatives of the training error. Vv = N Z Vipi + N Z VG
=1 =1
ll. FPEB: EXTENDING FPE TO BIASED MODELS Vi =W(wi,0%); Vi = Yip(x;,07) = Vipi.
In the following, we consider the case in which a sufficientiiNow, by remembering that andz are i.i.d. random variables,
large but finite number of datav is given, thus making we obtain that
effective results given in previous analyses. To take into

_ P T F
account the model bias, we must refine the signal-plus—noise Q= ()‘ E[\I“I/ I+ £[B]) . (3-6)
model of (1.2) by considering(z) as the sum of two terms: T T o= 1« T
the approximating functiorji(x) and the distortion function ] = Z\I’ i [B] = N Z;\I/P:iq’p,i' 3.7)
p(x) -
_ . 5 5 We next computd’”(6°). By differentiating (2.1) twice
Yi = Ui + ¢ = 4(z,0) + p(zi,0) + (. (3.1) P (6). By g1
2
By invoking R1, whenV tends to infinity, (3.1) becomes V"(6°) = E[uwT] + E[ 292}
yi =y (:,0%) + p(x:,0%) + €. (3.2)

2,,0
=E[V'|-E [(y — yo)aaTyz,} (3.8)

We definep(z;, 6°) to be the punctual bias in;.
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all terms being evaluated ét. If this is extended to the generalapproximators [18]. The second term in (3.13) may also

case wherd””(6°) may be singular, the trace term present ibecome null with reduced in overdimensioned models if

(2.10) can be rewritten as the network overfits the training data in the long training run

117 o (see results of Section IV).
sr(V(O )PPQ) S N 1) The Criterion in the Noise-Free Casé:et us nhow com-

= A tr(PEOT! V™) + tx(PE[B]V"™)  (3.9) pare (2.12) with (3.11). Whenever the process generating the

oy . P\ _ data is not affected by noige\, = 0), the model selection, as

= Ao+ Py _p<)‘0 + ) =P(Ao +A). (3.10) suggested by Moody [(2.12)], is unrealistic since it is based

We definep to be the effective number of parameters used ggﬂy on the training error. Equation (3.11) provides a more

the model to fit the data (the rank is full wheneyer= py) bust model selection by considering a corrective term, which
VEF= P ﬂepends on the complexity of the model and the number of

and A\, to be a virtual variance associated with the bias. LT . .
5= 0 (as may happen during training) we should consider ata samples. The criterion in the pure bias case directly
p= y happ 9 9 fle derives from (3.11)

instead of ;.
Finally, we can rewrite (2.10) as

FPEB= Vn(4, Z%) + LX, = Va8, 2% + 22 (3.15)
)\oﬁ + N N
N where the effective number of parameters is given either in
(3.12) or (3.14) andj, comes from (3.10) by substituting
expectations with the empirical quantities of (3.7) and (3.13).

For largeN we can substitute in (3.8) the expectatiBy 7] It should be noted that, _in a noise-free case, we simply have
€; = p;. a known quantity.

with its empirical valueE[¥¥7] (now evaluated af) and € _ _ N
P [ I ) s a simple example let us considér;, as defined in (3.3),

an estimate of the effective number of parameters can béA ! .
computed as with v examples uniformly extracted from tfie1, 1] interval,

7 =z, A, = 0 and the model famiy\/, = {§ = a,a € R}.

J(My) = Vn(8,2Y) +

= Vn(8,2V) + %()\0 ) (3.11)

fi: tr( PE[U \I/T](E[ vl — ) ) (3.12) We have seen that the best approximationyds= 0. From
(E[\I/\I/T] — ENENYT] - BNt (3.4) we have thatl(z,6°) = 1 and therefore, from (3.7)
N E[B] = p, = NT* 32N p(w;,6°)?. From (3.12)p = 1 and
E. Z (0, x:) (3.13) A\ = p = p,. Equation (3.15), therefore, finally provides the
TN r criterion
evaluated afi. We can further approximate (3.12) to reduce the FPEB= Vy + p—]\‘;

computational complexity in the evaluationby considering

the quasi-Newton Hessian [i.e., neglecting the second term ir2) The Criterion in the Noise-Plus-Bias Castn the case
(3.8) and, therefore, in (3. 13)I° becomes the approximatedof noise plus distortion, if the varianck, of the noise is
PQN and the approximated effective number of parametersksown, the analysis is straightforward and we have to%d

to criterion (3.15). Conversely, if the variance of the noise is
unknown, it must be estimated. By definition, we have that

2V (6°) = E[(2,0)] = Ao + po (3.16)

7 = te(B[UUT|E[0UT ) = tr(Pox) = rank( E[UUT]).
(3.14)

The effective number of parameters as defined in (3.14) has

also been suggested in [26] under the hypothesis of a ndth po = E[p(x,6°)%]. By considering (2.8) with terms
singular quasi-Newton Hessian. Unfortunately, this is not tf@ming from (3.10) and (3.16), we have that

case in real apphcapons Wher_e the matrix is generally singular R Ao+ 0 Ao +N\)

[see also observations following (2.10)]. To overcome such Wit)=—— "3y (3.17)
problems, different authors (see [27] for instance) evaluate the

effective number of parameters by counting the number 8nd, therefore, the estimate, becomes
non-null we|g_hts and biases. This procedure is definitely not . 2VN(9 ZNY 4+ \p/N — po
correct and either (3.12) or (3.14) should be used. Moreover, o 1 o/N

since (3.14) does not always provide a good approximation of p/

the effective number of parameters, (3.12) should be usedBg substituting (3.18) in (3.11), we obtain the expression for
preference. The two entities coincide when the term given the criterion in the noise-plus-bias case

(3.13) is null. This happens when dealing with linear models . N4P po—pop

or when the error surface has a relatively constant curvature J(My) = Vn(8, Z’\‘)N — + N >

in the § neighborhood and/or the network fits the data well. A 4
If the punctual bias is null whedV tends to infinity, then =FPE + [\ —po]%
E. = 0 and we say that the real function to be approximated

almost belongs td/;. In a noise-free environment this alwaysvhere FPE is the final prediction error term structurally
happens by allowing the number of hidden units to increasanilar to the well-known FPE for unbiased models. Even if
freely, since the chosen neural models are universal functittre expression is similar to FPE, it should be noted that now

(3.18)

(3.19)
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Vv contains also the bias contribution (and thus FRE-PE). Of course, if NV is sufficiently large, then the approximation
When N grows indefinitely, the training error becomes a goololds because of the law of large numbers. The validity
estimate of the generalization error. of estimating the covariance matrix from the available data
The criterion suggested in (3.19) relies on the hypothesﬁ% = P(ZN)(; for finite V was studied in [16], with respect
that p, and A\, are available or estimable. If this is not theo ARX models. By using Monte Carlo simulations, the
case, we can address the problem by assuming that alsoahthors obtained good approximationsfgfwith only 50 data
biasp is an i.i.d. variable with zero mean and an unkna¥yn instances. Similar results were also obtained in [28]. Monte
variance. The hypothesis relies on the fact that it is reasonaBlarlo experiments should also be performed for the case of
to assume both positive and negative punctual biases withnlinear systems, to determine experimentally the impact of
a null expectation and that the effect caused by a punctdiaite N on F,. Experiments presented in Section IV prove
bias added to the noise is equivalent to a realization oftlae validity of the framework outlined in this paper. It seems,
different noise with an increased variance [this is due thkerefore, reasonable to assume that we would obtain a good
approximation introduced in (2.9) when deriving (2.10)]. Thapproximation ofP, with only a few tens of data.
analysis is now straightforward by simply considering the
additive contribution in the two random variablgsand ¢ B. Relationships Between Moody’s GPE and FPEB

in (3.1) and (3.2), whose effect is equivalent to a random Under Moody’s assumptions, we can estimate the general-

va_nable 1 Wwith Zero mean_andxn = Ao + A, variance. ization error of (2.10) with the one provided in (2.12)
Without presenting all details, we can repeat the procedure

accomplished in Section II-A. Briefly, (3.11) becomes E[V(9)] = E[Vx]val (3.26)
J(My) = Vn(8,2Y) + PAy (3.20) and therefore, from (3.10) and (3.16), we obtain a relationship
N among Ao, po, A, o and peg
Wlth R )‘o + Po ﬁ()‘o + )‘b) -V é A Deft 3.27
i 2Vn(6,2Y) * =@+ on (3:27)

)= i (3.21) 2 2N
1—p/N Equations (3.17) and (3.27) constitute a linear system whose

As a consequence, the final criterion becomes formally similg@lution gives the estimates
to FPE

5N
N+p b= OIS A (B 1) @)
FPEB= FPE, = Vy = (3.22) 1 = pea/2N 2p
P and, therefore, (3.11) becomes

where Vy accounts both for the noise on data and the bias. .
The effective number of parameters is, again, either that of J(M;) = GPE= VN(é,ZN) + }Ope“ (3.29)
expression (3.12) or (3.14). Whenever the model is unbiased, 2N
we have that\, = 0 and p, = 0, V» does not contain any which is equivalent to the GPE given in (2.13), with (3.28) as
bias contribution and the criterion reduces to FPE. the estimate of variance.

The hypothesis of assuming the bias as a random variableFinally, we could use the estimates of (3.28) to reformulate
even if appealing, is not correct from a theoretical point dfn this case) the FPEB
view and we should consider (3.19). Without specializing the Pt
effects of noise and bias, we can still derive from (2.10) a FPEB=FPE — p, ——+——— (3.30)

. . . 2N—peﬂ
criterion formally similar to NIC.

By substituting (2.5) in (2.10) and expectations with empiwhere FPE = Vi (2N + pog)/(2N — pog). Equation (3.30)
ical quantities, the criterion becomes states that, under Moody's assumptions, the final prediction

) 1 o ) error in the biased case is structurally equivalent to fFPE
FPEB= Vn(f) + Ntr(PE[Q(9)](E[V”(9)])+) (3.23) corrected by a factor depending on the effective number of
parameters and on the bias degyge

where
N - L
. 1 R C. The Impact of Training Time in the Use of FPEB
EQO)] = (O (H)T 3.24 o . .
Q)] ;6” (O)w:(6) ( ) In all these criteria, whenever the network is overdimen-
q sioned with sufficient degrees of freedom with respect to the
an

given application, the terniy decreases asymptotically with
E[V//(é)] - E[097] - E.. (3.25) training epochs. On this basis, we should identify the optimal
network as the one obtained after infinite training time.
Once again, the number of parameters used by the model i®Vith respect to a simple gradient based procedure, and
that of (3.12). The validity of the presented criteria relies onnder the hypothesis that the learning coefficient tends to
the validity of substituting expectations with empirical valuezero and that the number of training epochs tends to infinity,
In other words, this is equivalent to assuming that (or Amari, in [15], proved that for a sufficiently large training

~

PPFy) can be reasonably estimated from the available datame ¢.., 6(t:,) has a Gaussian distribution whose expectation
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is a point minimizingVy with variance proportional to the of hidden neurons decreases, but this strategy provides useful
learning coefficient. The proof is only valid for gradienguidelines in reducing the number of models to be considered.
descent algorithms and does not imply that the best estim&enerally, in a few iterations we can identify a small set of
of #° is obtained after infinite training but simply that, with acandidate topologies containing the optimal one.

resampling training procedure, we will converge to a point Training was implemented with an optimized Leven-
minimizing Vx. In fact, it is not true that after infinite berg—Marquardt learning algorithm. In the rest of the section,
training epochs we necessarily end in a good minimum (i.eve will compare several criteria which are derived from FPE
6 may be a bad estimate éf) because of overtraining. Weor FPEB, by considering the novel definition of the effective
already discussed the issue in observations following (2.Bumber of parameters. More specifically, the following are
The problem can be solved by implementing an early stoppitige criteria.

strategy based on the effective number of parameters. 1) FPE: the criterion is the well-known FPE for which
Experimentally, we have seen that training should be s the number of nonnull degrees of freedom of the
stopped whenevep converges and/od (M, (8)) is constant network;

or increases. The rationale behind this is thaepresents the 2) FPEL the criterion is the FPE for which the number
effective number of degrees of freedom used by the model j of parameters has been evaluated according to (3.14)

to infer the unknown function from the input/output pairs. (we consider the approximated versionif
p evolves during the early stages of training as if it were 3) FPE2 the criterion is the FPE for which the number
driven by an internal growing/optimizing algorithm, which p of parameters has been evaluated according to (3.12)

provides the appropriate degrees of freedom. Heuristically, (we consider the correg).

whenp converges and (M (6)) is constant or increases, the 4) FPEB the criterion is the one given in (3.15) for the pure
training procedure needs to be stopped and, at that time, the bias case and the one in (3.23) for the most general case
associated entities (e.gf, 7, 5, etc.) should be used in the with the approximated effective number of parameters
criteria. A different theory, dealing with the determination of from (3.14).

the optimal stopping point, has been developed in [32] where5) FPEB2 the criterion is the one given in (3.15) for the

it has been proven that the optimal poiit..) belongs to a pure bias case and the one in (3.23) for the general case
1/+/(IN) neighborhood of°. The two criteria are equivalent with the correct effective number of parameters from

since, in such a neighborhood, (2.7), (2.8) and the following  (3.12). This criterion is the most accurate one.
relationships are valid.

A. Example 1: A Reduced-Bias Case

IV. LEARNING INPUT/OUTPUT RELATIONSHIPS Our goal is to approximate the nonlinear function
In this section we apply the criteria proposed above to PN
determine the optimal neural topology in three applications. y(z) = —wsin(z”) + T4 (4.1)

The first application deals with a smooth function in a noise-
free set up. The second application also refers to a noise-ffem this example, the training set was composedvoft 80
case but, in this example, the function to be learned is quitairs uniformly extracted from thp-2, 2] interval. The func-
irregular and the data do not contain sufficient information ton is smooth and the training set rich enough to guarantee
properly configure the neural model. In the third applicatiothat (4.1) almost belongs to the neural model family. No noise
the function to be learned is affected by noise. was added to the data: this is a pure bias case.

Selection of the optimal topology according to FPEB re- The heuristic outlined above was used to consider topolo-
quires the training of several hierarchical models (the hierarchies with hidden units ranging from one to seven. For each
can be obtained by increasing the number of hidden units). Qteural model we have to apply the training procedure and
viously, the training procedure is time consuming and trainirthen compute the criteria. According to the early stopping
a large subset of the model structure may be computationadlyategy, we monitored the evolution of the correct and the
infeasible. Heuristics can therefore be used to guide the seaagproximated effective number of parameters during training
toward the determination of a reduced subset of models. fime. The learning phase lasted for 1000 epochs (each epoch
this end, two different approaches can be found in [2] anchplements two minimizations of the training error). In the
[29]. Here, we implemented the second one. Briefly, instedallowing plots, nh indicates the number of hidden units and
of training and evaluating the criterion for each different neural the asymptotic value (with respect to the training epochs)
topology, we apply an OBD-like technique [25] to connectionassumed byp.
ending in the output neuron of a strongly overdimensioned The evolution of the correct effective number of parameters
topology. The hidden layer complexity can be reduced (thfsr each topology of the subset is given in Fig. 1. We can
exploring the hierarchy) by removing the connectio,n aftémmediately see that witmh < 3, the network utilizes all
which the increase in MSE is minimized. A new topology ishe degrees of freedom available, whereas for networks with
given and the criterion can be applied without requiring a nelmigher complexity, the effective number of parameters is less
training phase. This OBD-like process iterates until the numbiran the maximum (forn/ hidden neurons we havenh
of hidden units is equal to one. The error in estimating theeights andnh + 1 biases). The behavior of the models
criterion without any effective training increases as the numbeith nh > 3 is such thatp first evolves during the initial
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Y1alidation plot. Actually, there is a very small improvement
tha : - . .
|r\ performance when increasing the number of hidden units,
ut we are interested in the smallest model keeping the same
performance. The training data (circled), the function to be
S : learned, and the best neural model selected by the criteria are
The approximation does not consider the term of ex-

pression (3.13). Since the function almost belongs to the neLﬁéﬁtted n Fig. 5.

model family, after a small number of training epE>ch§ we ha\§ Example 2: A High-Bias Case

that £. = 0 and the correct and the approximatedoincide ) _ ]

(as happens) in the long training run. I_n_thls experiment, we drastically reduce_d_ _the _number of
Comparisons among different criteria are given in Fig. #aining data to 32 and enlarged the definition m_terval to

for the casenh = 2 where we indicated the MSE validation[—9: 13]- Data was regularly sampled from the function

with MSEval and MSE training with MSEtr. We can see that, \/ 2 atan(z — 3)?

despite the approximation leading to (2.10), FPEB and FBEB2  #(x) = 4/0.1sin(2x)2 +

are reasonable estimates of the MSE validation (evaluated over (& + T)(cos(z) +2)

the whole definition interval) while all other criteria provideand no noise was added. This function is definitely more

a worse estimate. The effective number of parameters ap@gular than the previous one (see Fig. 11). The OBD-like

the criteria have been determined with the early stoppipgocedure identified the interval from one to ten hidden units.

strategy suggested in Section IlI-C. The most accurate critefia monitor overtraining effects, we have to track the evolution

are then compared in Fig. 4 for neural models with hiddest the correct (Fig. 6) and the approximated (Fig. 7) effective

units varying from one to five. For all models, FPEB2 providedumber of parameters. In the figures, andp increase from

a good estimate of the generalization ability, while all criterithe bottom to the top of the plots. It can be seen that now there

selected the model with’ = 4, in full agreement with the is a difference in the estimated effective number of parameters

stages of learning, before reaching a steady state (note
for thenh = 6 experiment the model degenerated to a mod
with lower complexity). The evolution of the approximate
effective number of parameters is given in Fig. 2.

(4.2)
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for the casenh = 2 (we havep = 7 for the correct and
p = 6 for the approximated one in the long training run). Since
for high values ofn/i the network is overdimensioned, the
stopping points suggested by the two estimates are different.
For overdimensioned models, the best stopping point is at the
early stages of learning where the correct and the approximated
effective number of parameters differ. we should, therefore,
always consider the corregt

In Fig. 8, the evolution of different criteria over the training
time for the casenh = 5 is plotted on a semilog scale. We
realize, once more, that the FPEB'’s provide better estimates
of the generalization ability of the model (again there is
a discrepancy between FPEB and FPEB2 because of the
difference inp). FPE, itself, is always the worst criterion.
We determined the best criterion FPEB2 and FPE (the worst
one) on different network topologies with hidden units varying
from four to nine. Results are given in Fig. 9. FPE selected the
model with five hidden units, while FPEB2 selected the one
with six. The model with eight hidden units almost provides
the same performance (according to the criterion) as the one
with six, but it requires a more complex model. On the other



ALIPPI: FPE-BASED CRITERIA 971

10 T
9
nh=3,p= 8
[y 8—
©
s o7t 1
= g nh=2, p=6
2 < 5
s iy
=- g 5t
> = nh=1, p=4
o 4-
[}
=
3 L
2
Best approximation 1 ) . A
100 200 300 400
Fig. 10. The training data, the real function, and the best neural model. Training epochs
25 T — T Fig. 12. The correct effective number of parameters.
2 025 v
i % 02}
= i 1 =
i s FPE2
> 05} R @
2 i =015}
3 : ] H o~
g8 O YA ] oW
AN AR § e
R wi
-r : . © ) &
5) IR { Boost
' w FPEB, Msetr
%5 0 5 10 15 —— Mseval ‘ ~ “FPEB2
Overtraining effect, nh=10 00 100 200 300 200

Fig. 11. Overtraining effects for the model with ten hidden units. Training epochs: interval 20-400, nh=4

L . . . Fig. 13. Evolution of the criteria in the long training run for the model with
hand, the criterion will penalize such a model if the model. = 4.

complexity is overdimensioned with respect to the number of ) _
data elements. The selected model is then the one which gagfacted from thgo, 2] interval and the associategs were
solves the performance/model complexity tradeoff accordifgmupted with a Gaussian noise with zero meanane- 0.04
to (3.23), even if this may imply the selection of a model with §&riance. We assume that the process generating the data is
high bias (see Fig. 10). Validation results support the selectigffgknown. Since we do not haeepriori knowledge, we have
made and prove the efficacy of estimating the validation errtst consider the most general criterion given in (3.23). The
with FPEB2. The best approximation, as suggested by th@me he_urlstlg suggests exam|nat|qn of mpdels with from
criterion, is given in Fig. 10 where the training data are circle@n€ to five hidden neurons. As with previous cases, we
the real function of (4.2) is plotted in a continuous line, anghonitored the evolution of the correct effective number of
the best estimate with a dotted line. parameters. Fig. 12 shows the 1-400 training epoch interval
If the learning termination point is not correctly selectefP” models with from to three hidden units. We can see
(e.g., according to the early stopping strategy baseg and that p for the case;_zh = 1 reaches one after some training
the criteria), we could easily end up with overtrained network§Pochs and then it converges by using all the degrees of
An example is the plot of Fig. 11, obtained after only 4offeedom provided by the model (i.e., four). The model with
training epochs for thesh = 10 topology. We can see thatWo hidden units uses only six parameters out of seven, while

after too much trainin@ is a bad estimate of°. in the case ofnh = 3, § decreases and converges to the
steady state with eight parameters out of ten. It is easy to

C. Example 3: Noise and Bias determine the learning termination points for such topologies.
As a third example, we consider the function The behavior of the most relevant criteria over the training

B . o s run is given in Fig. 13 for the casei: = 4. The behavior
ylw) = 4.26(e" —de” ™" +3e777) (4.3) of the criteria with respect to different neural topologies
as suggested in [17]. A set &f = 100 z’s were uniformly (from one to five hidden units) are plotted in Fig. 14. We
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0.035 : T T APPENDIX A

To calculate the parameter covariance maffix= E[(6 —
6°)(6—6°)T] of (2.3) and (2.5) we need to expahd (4, Z™)
arounde® (to whiché converges) with Taylor and evaluate the
expansion af. SinceV (6, Z") = 0 (the learning procedure
ends in a minimum) the expansion provides

0.03¢
0.025¢

002¢
0=V(8,2) =V, Z%) + Vi(x. ZV)( - 6°) (A1)

0.015¢
where each component of thgvector is within a sphere of

radius ||6 — 6°|| centred ong°.

In the limit, whenN tends to infinityy tends tof° and Vi
converges uniformly td/ with probability 1 in.D from R1
Under the regularity hypothesis, this convergence also holds
for the Hessians and therefolg! converges td’” (see [19]
and [20] for the proof). (A.1) thus becomes

0.01

0.005¢

FPEB, FPEB2, FPE2, MSELr, MSEval

The number of hidden units from 110 5
N % )
Fig. 14. Different criteria for the models from one to five hidden units. VJI\T(HOa A ) + V”(HO)(H - 90) =0. (A.2)

(A.2) constitute a linear system whose Moore—Penrose solution

08 ' ! in the mean square sense is [30], [31]

.l (0 0) = ~V"H@EW 2N + U~ Po (A3)

04

where [ is the identity matrix,? = V/+(§°)V"(4°) is an

= 0.2 idempotent matrix P* = P) orthogonal projector onto the
g ot column/row space o¥”, andv is an arbitraryp-dimensional
§ 02 column vector.
5™ From simple manipulations and remembering tfdtf —
£.04 P) = 0, we can write that
=

PPy = E[P(6 — 6°)(6 — 6°)7]
= V" (6°)QV" T (6°) — V"' H(6°)E[V/(6°, ZN)]UT(I — P).
(A.4)

The second term of (A.4) can be neglected since
Best approximation » E[V(6°,ZN)] is asymptotic to V'(6°), which is null

Fio. 15, The training d h | funct dthe b | model (see also [15]) and (2.5) is proved. When"*(6°) is

1g. . e tralnlng ata, the real function, and the best neural model. nonsingular we have Slmply thﬂ _ I and we Obtain (23)

can see that the networks with two and four hidden units APPENDIX B

provide the same performance. Since we choose the simplest .. _
model when determining the complexity/performance tradeo i}v'th re;pect to (2.6) we note tha( M) andV'(6) are not_ .
hown, since we do not know the true data. Such quantities

we consider only the network with two hidden units. Th il therefore b . db . | . )
best estimate is given in Fig. 15 (training data: circled, re I therefore be approxmate y using Taylor expansions in
function: continuous line, best approximation: dashed Iine).t e Lagrange notation arqund the minimé(to which ¢ W'.”
converge) ofl’(6). Recalling thatV’(6°) = 0 and evaluating

the expansion fof = 6, we obtain
V. CONCLUSION

In this paper we presented a theoretical framework which  V(6) = V(6°) + 1(é — )TV (x)(0 — 6°) (B.1)
provides effective criteria to select and validate neural topolo- 2
gies for learning an unknown function. A generalization of theherex is a point whose components lie within a sphere of
FPE criterion to biased models has been introduced, whitddius||é — 8°|| centered or”. We recall that (A.1) holds
is shown to be related to the one suggested by Moody. , . . e N v NA o
The criteria solve problems posed by NIC. This has beet](N(e’Z )= Va(0%,27)+Vi(x, 27 )(0-67) = 0. (B.2)
achieved by suitably estimating the covariance matrix %e expandViy (6, ZV) around#°, considerV},(6°, Z¥) as
_the parz_imeters with th(_e _I\_/Ioore—Penrose pseudomversepki)\)/en by (B.2), and evaluate the expansion dor 0
introducing a novel definition of the effective number o
parameters and by implementing an early learning termination A o Lo ponTomi=v/4  go
strategy which helps prevent overtraining. Vn(0) = Vn(87) = 5 (0 =07 V)6 - 67) - (B3
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wherey is a convenient point similar t9 andy. We now take [12] Y. Le Cun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in

expectations of (B.1) and (B.3) by considering the asymptotj

relationships given bjR1and expression (2.2), thus obtainin
E[(6 - 6°)"V"(x)(8 - 6°)]
= E[te(V"(x)(0 - 6)(8 - 6°)")]

&)
[14]

(18]

Proc. NIPS2 San Mateo, CA, 1990.

B. Hassibi and D. G. Stork, “Second order derivative for network
pruning: Optimal brain surgeon,” iRroc. NIPS5 San Mateo, CA, 1993.

A. Sankar and R. J. Mammone, “Growing and pruning neural trees
network,” in IEEE Trans. Computvol. 52, pp. 291-299, Mar. 1993.

N. Murata, S. Yoshizawa, and S. Amari, “Network information crite-

rion—Determining the number of hidden units for an artificial neural

~ tr([V”(QO)PN]) (B.4) network model,” inlEEE Trans. Neural Networkwol. 5, pp. 865-872,
Nov. 1994.
[16] L. Ljung, System Identification, Theory for the UseiEnglewood Cliffs,
H NT Y (. =N\(D o NJ: Prentice-Hall, 1987.
E[(9 -0 ) VT(X)(Q -0 )] [17] K. Hornik, M. Stinchombe, and H. White, “Multilayer feedforward
= E[tr(V’?()Z)(é — 90)(é — QO)T)] networks are universal approximators,'Nieural Networksvol. 2, 1989.
_ [18] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
~tr([V"(6°)Py]) (B.5) bias/variance dilemma,” iNeural Comput.vol. 4, pp. 1-58, 1992.

being Py = P,/N and tr the matrix trace. From (2.1) we
recall that

E[Vi(6°, ZV)] = V(6°). (B.6)
From (B.1) to (B.6), we obtain finally

BV~ V) + 5 a(V(6)P])  B7)

BVn(8, 2]~ V(") — 3wV (6)Px])  (B9)

from which (2.7) and (2.8) follow by noting that”(6°) =
V//(QO)V//—F(QO)V//(QO) — V//(QO)P_
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