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Testability Analysis and Behavioral Testing of the Hopfield Neural Paradigm
C. Alippi, Franco Fummi, V. Piuri, M. Sami, and Donatella Sciuto

Abstract—Testability analysis and test pattern generation for
neural architectures can be performed at a very high abstraction
level on the computational paradigm. In this paper, we consider
the case of Hopfield’s networks, as the simplest example of
networks with feedback loops. A behavioral error model based
on finite-state machines (FSM’s) is introduced. Conditions for
controllability, observability and global testability are derived to
verify errors excitation and propagation to outputs. The proposed
behavioral test pattern generator creates the minimum length test
sequence for any digital implementation.

Index Terms—FSM, functional TPG, neural network.

I. INTRODUCTION

I NCREASING complexity of VLSI systems has accelerated
a trend to take into account testability and test generation

throughout the synthesis process, since the highest abstraction
levels [5]. This involves defining testability parameters, error
models and test patterns based on technology-independent,
purelybehavioralinformation, where by “behavior” we denote
the input–output mapping affected by the system, excluding
any implication of the system’s architecture or structure. Such
high-level approaches are advocated as allowing compact sys-
tem description and simpler test pattern generation algorithms.
On the other hand, validity of behavioral approaches can be
finally assessed only by evaluating the structural fault coverage
achieved.

An interesting case concerns VLSI implementations of
artificial neural networks (ANN’s). Although a large number
of silicon solutions have been proposed, testing issues have
mostly been examined in the context of implementation rather
than with reference to the algorithm implemented. Behavioral
analysis of feed-forward neural paradigm has been discussed
in [9], while impact of faults on the network behavior has
been analyzed in [8]. In this paper, we present a solution for
functional test pattern generation and we examine its validity
with respect to actual coverage of structural faults.

The standard Hopfield network [7] consists of a layer of
recurrent neurons. In vector notation, neurons evaluate their
own output as

(1)

where is the output (orstate) vector of the neurons
at the previous iteration, is the interconnection
(synoptic) weight matrix, is the bias vector and the
nonlinear activation function. We restrict the possible values
assumed by the components of to {0, 1}. The network
evolves autonomously from the externally forced initial state
(specified by external inputs) to a stable state defined as an
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attractor. During the learning phase, weights are determined
with reference to a set ofdesired attractors but a number
of spuriousattractors may arise as well. Two different recall
procedures have been presented in literature [7] as follows.

• Parallel-Type:Initial inputs are set simultaneously in all
neurons, and the network evolves toward the final steady
state. At each iteration, neurons outputs are simultane-
ously updated.

• Serial-Type:Initial inputs are set in all neurons simultane-
ously and subsequent neurons’ state update is performed
one neuron at a time in a given ordering (usually, circu-
lar).

We assume that learning has been perfected. In Section II
we present a higher abstraction model of network behavior
based on the finite-state machine (FSM) model. In Section III,
testability is evaluated based on this model. In Section IV, a
functional test approach is developed based on a well-known
functional error model introduced for FSM’s [9], on related
test pattern definition and on implicit [2] techniques.

II. FSM MODELING OF THE HOPFIELD PARADIGMS

A Hopfield network can be modeled by a Moore-type FSM
where we have the following.

Set of states of the machine (states being coded
as vectors of the Hopfield network).
Input alphabet defined as the set of input vectors used to
force initial states. After the initial setting the network
evolves autonomously toward an attractor, thus the input
alphabet is not involved in the definition of next-state
function .
Output alphabet, .

for any state evaluates the next
state based on (1). Evaluation may either render

(i.e., an attractor has been reached and
the computation stops), or [(1) is applied
again].

is identical to .

A. The Parallel-Recall Hopfield Paradigm

Given any initial input vector coded by , the
network’s operation is deterministic, so that the associated
FSM will evolve through a sequence of states ,
where is the attractor associated with. If during learning
orthogonal patterns have been used, only desired attractors
will be present; otherwise, spurious attractors may appear in
the system’s behavior.

Considering as an example the four-neuron Hopfield net-
work characterized by weight matrix in Fig. 1(a), appli-
cation of induces the state sequence 0010, 1111,
1110 (steady state), represented by an oriented path in the state
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(a)

(b)

Fig. 1. (a) Weight matrix of a Hopfield network and (b) its state graph.

graph of the equivalent FSM. Thus, the state transition graph
of the equivalent FSM is acyclic, apart from self-loops on the
attractor state.

Whenever the input pattern applied coincides with an
intermediate state of a previously identified path, the
state sequence created starting from coincides with the
subsequence of the complete path (in our
example, this happens if the input pattern is 1111).

If a different input pattern is applied leading to the same
attractor , the path associated with such input will either
converge with the previous one in the final state, or else share
with it a final segment (obviously including the final state). For
example, for attractor 1110, the first case is achieved starting
from input state 1010, while the second one is generated by
input state 1011. By applying all input patterns leading to
the same attractor , a directed acyclic subgraph is derived
containing all and only the initial states sharingas attractor.
An example is the subgraph whose states converge to steady
state 1110 in Fig. 1. This subgraph is similar to a-ary tree;
however, the oriented paths are not directed from the root (in
our case, the attractor 1110) to the leaves, but in the reverse
direction. Similar subgraphs are created for each attractor. The
complete state transition graph of the FSM is the union of all
above subgraphs and resemble a forest [see Fig. 1(b)].

This basic characteristic does not change even in the pres-
ence of spurious attractors. When only expected attractors
are present in the neural network, the set of possible states
is partitioned into disjoint subsets each associated with an
attractor. Similarly, the state graph is partitioned into disjoint
subgraphs: each of them is associated with an attractor and
contains all and only the initial states leading to such attractor.
Each possible state belongs to exactly one subgraph. When
spurious attractors occur, the set of states is again partitioned
into disjoint sets: in Fig. 1(b), only 1110 and 1100 are expected
attractors while 0000, 0001, and 0011 are spurious ones. States
not associated with expected attractors are partitioned into
subsets associated with the spurious attractors. Where testing is
concerned, spurious attractors and the related subgraphs will be
treated in principle just as expected attractors and the related
subgraphs.

All the above assumes that the whole input space of
the Hopfield network is meaningful, i.e., that all binary
configurations over can be forced as initial states. The

associated FSM then contains exactly states. If, on the
contrary, the input space is partitioned into a set of feasible
patterns and a set of unacceptable patterns, states
associated with patterns in may appear in the state graph
in any position (either as leaves, nodes internal to a path or
attractors). States associated with patterns innever appear
as leaves or roots, they will either be internal to a path or not
appear at all in the state graph, which may therefore consist
of less than states.

B. The Serial-Recall Hopfield Paradigm

Given an initial vector, the states of the neurons are
updated one at a time in a predetermined order so that the
machine evolves through a sequence of “intermediate”
states. At the end of the sequence, a new “main” state is
reached (all neurons have been updated) and the first neuron
of the sequence is again ready to fire. The operation is
repeated until an attractor is reached. We can see superposition
of two synchronisms: a fine-grained one controlling firing
of individual neurons within the sequence and a main one
activating a new sequence. When an attractor is reached, the
corresponding intermediate states form a cycle. This mode
of operation requires a slightly more complex FSM model. The
FSM associated with the neural network containsmemory
elements whose states are initially set to the input vector; a
controller specifies—at each secondary clock cycle—which
memory element must be updated. The controlled FSM pro-
duces a new state on the basis of the present state and of the
information provided by the controller; an output vector is read
only when a main state is reached.

In the equivalent FSM state diagram, states are defined as
for the parallel-recall case, while transitions from one state to
the next one are marked with the ordering number of the firing
neuron. To describe creation of the state diagram, we refer to
a simple example defined by

(2)

The network has one true attractor, namely 1100 and the
spurious attractor 0011. To derive the equivalent state diagram,
we first choose the firing order for the neurons, e.g., the natural
ordering from neuron 1 to neuron 4 (left to right). We set
an initial input configuration (e.g., 0000) and enable the first
neuron to fire; state 1000 (reached by an edge marked 1) is
obtained; from this, firing of neuron 2 produces outputs 1100,
firing of neuron 3 produces 1100 and that of neuron 4 outputs
1100. We knowa priori that this is an attractor state, so that no
further application of (1) is required; in general an attractor is
identified whenever a cycle is generated by a firing sequence of
the neurons. Starting now from initial configuration 1000,
firing of neuron 1 leads to state 1000, already present in the
graph (the two states are marked with the same coding and
are reached by firing of the same neuron). Thus, it is not
necessary to pursue further the path, since confluence into the
previous one is achieved. By iterating this procedure we end
with the state diagram of Fig. 2 (“main” states are identified
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Fig. 2. Equivalent state diagram of the Hopfield network (2).

by a thick contour, “intermediate” ones by a thin one). This
is actually the state diagram of thecontrolledFSM. Under the
assumption that the firing order is kept unmodified throughout
the network’s operation, the state diagram is a disjoint graph.
Each of these subgraphs is acyclic, excepting for the-state
cycle corresponding to the attractor.

III. T ESTABILITY ANALYSIS

A system’s testability issue can be summarized by eval-
uation of controllability and observability. By controllability
we denote the possibility of propagating arbitrary test patterns
from the system’s inputs to the component whose possible
fault must be tested. Byobservabilitywe denote the possibility
of propagating the results produced by the component under
test up to the system’s outputs. Assessment of a system’s
behavioral testability allows the estimation of the gate-level
fault coverage before logic synthesis is performed. If such a
value, which represents an upper bound, is not satisfactory,
suitable design guidelines can be adopted from the initial
design steps thus avoiding iterations of the entire synthesis
flow.

In the case of Hopfield networks, behavioral testability
can be seen as the possibility of forcing the network into
an arbitrary state and then verifying the correct transition to
its next state. In the parallel-recall case, an arbitrary state
can be applied as input configuration, i.e., the machine is
completely controllable. In the serial-recall case procedure, if
we assume that the controller is provided with a reset signal
forcing it to its initial state, the machine is controllable as well.
Therefore, controllability is always granted and independent
of the adopted recall procedure. In the case of the parallel-
recall procedure the state is directly read at the network
outputs, so that the machine is completely observable. In
case of the serial-recall procedure, observability holds for the
controlled FSM, while the controller outputs cannot be directly
propagated to the network outputs. However, a fault in the
controller modifies the firing sequence of the neurons, which is
observable at the outputs after a given time latency, as it will be
shown for the test generation procedure. Therefore, also serial-
recall networks are observable. Thus, any Hopfield network
affords complete behavioral testability. Actual testability will
then depend on the architectural and technological solutions
chosen for machine implementation; behavioral testability
constitutes an upper bound for lower-level (e.g., gate-level)

testability (it is respected in particular if one-to-one mapping
of operators onto components is adopted).

IV. TEST PATTERN GENERATION

For FSM functional test, thesingle-state transition fault
model assumes that a fault generates an error which can
affect one transition only, producing either a faulty state or
a faulty output or both. It is assumed that the number of
states does not increase as a consequence of a fault. In our
specific case, since the FSM model describes all possible
states of the neural network, we assume that gate-level faults
cannot introduce new memory elements. In the most general
case, functional testing of a FSM requires verification of
all transitions of the machine. For each transition a test
sequence must be identified, composed of three subsequences:
a justification sequencedriving the machine from a known
state into the source state of the transition to be tested; the
input symbolactivating the transition and adistinguishability
sequencedistinguishing the correct destination state from any
other (faulty) one. Unique input–output (UIO) sequences have
been selected to discriminate the correct state from any other
state of the machine [10]; it might be recalled that not all
FSM’s have UIO’s for each state [11].

The FSM model of a Hopfield network allows a simplifica-
tion of the test generation process. Each state of the FSM
is characterized by an UIO sequence; parallel-recall based
networks have UIO’s of unit length since each state shows a
different output value, while for serial-recall based networks,
the UIO can be at most of length , since it corresponds
to the path from the given state to the next main state. In
the following, we will illustrate the test pattern generation
approach for serial-recall networks since it is more complex;
when appropriate, we will show differences between the two
recall schemes.

The test sequence for a transition outgoing from a main
state does not require any justification sequence since the
machine can be directly set to such a state. For transitions
outgoing from intermediate states, the justification sequence
consists of the input sequence which drives the FSM from
a main state to the source state of the transition under test.
After application of the transition under test, the UIO for its
next state is concatenated. The UIO for a main state consists
of the sequence leading to the next main state; there is no
need for an explicit test sequence for transitions outgoing
from intermediate states since they are implicitly tested by
the test sequence of the transitions from the main states. For
example, starting from 0110 (Fig. 2), in eight clock cycles
(two complete firing sequences) attractor 1100 is reached;
all transitions in the path are tested, since each of them
is concatenated with its UIO sequence. Since any transition
applied in the test sequence is always followed by its UIO
sequence, that verifies its next state, it is assured that the path
starting from a main state and reaching the next main state is
always correct [3]. Start now from initial state 1110: firing of
the first neuron leads to an already visited state (0110, reached
by firing of neuron 1), so that it is not necessary to pursue
the sequence until the attractor, but only for a length of four
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states (the UIO). Furthermore, there is no need to create a test
sequence from 0100, since it has been already explored, and
thus tested, by activating the first path starting from state 0110.
By applying path analysis, the FSM in Fig. 2 is completely
tested by a set of sequences requiring a total of 56 clock cycles
(instead of 88 cycles necessary to explore all paths).

The test generation procedure aims at identifying the min-
imum subset of initial states such that all transitions of the
machine will be activated. To check all transitions, it is
necessary to explore all paths of the FSM, starting from
all possible initial states and terminating when the set of
explored states (always considered aftersteps, to account
for completion of the serial-recall sequence) coincides with
the set of the machine’s states. The test generation algorithm
performs such FSM traversal in an implicit way to identify the
optimal test sequence; to reduce the test generation complexity,
a symbolic exploration must be performed.

A. Implicit Implementation of FSM’s

We assume that each element of alphabetis a vector
encoded by Boolean variables , (input variables).
Similarly, the present state is encoded byBoolean variables

(present state variables), the output vector by
Boolean variables (output variables), and next state
by Boolean variables (next state variables). The
transition induced by function can be expressed by its
characteristic function and efficiently represented with binary
decision diagrams (BDD’s) [2]. Moreover, there are well
known techniques [12] to enumerate all states of a FSM
by implicitly traversing its transition relation. Unfortunately,
classical traversal techniques cannot be employed in the case
of Hopfield networks; the FSM representation here is not based
on a transition relation but it is given in the form of a vector-
matrix product and a threshold function, elements of the weight
matrix and of the threshold vector being integer numbers
instead of Boolean values. Integer and matrix operations with
BDD’s have been defined in [6] to face the problem of
technology mapping.

Let be the set of integer
numbers which can be represented with bits and be
the function mapping Boolean vectors of lengthonto ;
it is where each has value “0” or
“1” and is represented as a BDD, and the vector symbol on

emphasizes that each integer number requires a vector of
Boolean values to be represented to.

Arithmetic operations such integer valued functions can
be implemented in terms of logical operation on BDD’s. A

matrix over can be represented as a
integer valued function such that

where represents the bit vector corresponding to
and the bit vector for . Matrices composed of integer

values can then be represented as integer valued functions and
thus implemented with arrays of BDD’s. Moreover, matrix
operations can be implemented in terms of logical operations
on BDD’s since they are based on the mathematical operations
of addition and multiplication which can be implemented with
BDD-based operations [6].

Fig. 3. Algorithm for the unreachable states identification.

B. Test Generation Algorithm

The proposed testing methodology consists of the following.

1) Identification of the set of unreachable states (US),
composed of those main states which are not reachable
from other main states. Test generation will be
performed starting from this set of states since in
this case the longest paths to the attractors will be
obtained. Considering the example in Fig. 2, US

.

2) Computation of the test length for each main state in
US is as follows:

• for each main state US determine the main
states traversed from to the attractor;

• for each pair of main states and which share
a traversed main state, assign as test sequence
length for the entire length until the attractor,
and as test sequence length for the length of
the path from to .

For instance, states 1110 and 0110 in Fig. 2 share the
traversed main state 0100 in the path reaching attractor 1100.
A test sequence of length is associated with state 1110
and a test sequence of lengthis associated with state 0110.

Identification of unreachable states without explicit rep-
resentation of the FSM is implemented by the procedure
Unreachable_States in Fig. 3. Such a procedure requires as
inputs the BDD representation of the weight matrix (the
vector of BDD’s ), the threshold vector (the vector
of BDD’s ) and the number of BDD’s necessary for
integer representation (); it returns the BDD representation
of the unreached states.

Complexity of the algorithm is proportional to the length
of the longest path starting from an initial state and arriving
to its attractor. The same algorithm holds for parallel-recall
networks, where only one operation, instead of, is nec-
essary to compute the next reachable states. The result of
the Unreachable_States procedure is a characteristic function,
expressed through a BDD. Each minterm belonging to such
characteristic function is extracted and included in the set US.
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To perform the second step the number of states in US
must be enumeratable. This is not restrictive since these states
constitute the test sequence that must have finite size to be of
practical use. Main requirement of this second phase of the
testing approach is the storage of the already explored states
in order to interrupt the test generation. An already explored
state is represented by its-bit output configuration and the
additional information on the ordering number of the neuron
whose firing produced the transition to the state. Given
neurons, this information requires further bits.
In case of a parallel-recall based network, these lastbits
are not required.

For example, the reset state 1110 (Fig. 2) is represented by
configuration 111000, where the last two bits represent the
code of the first firing neuron. Therefore, a BDD is
generated by adding all states (both intermediate and main
states) reached by states in US.

Initially, is composed of a single node (the FALSE node)
that represents the empty set. Starting from the current main
state in US the next state is generated by the product
of the weight matrix with the main state and by applying the
nonlinear function over the result. Ifalready belongs to the
test sequence for is interrupted, otherwise the reached state
is added to and the exploration continues. The path examina-
tion is concluded when the attractor is reached, verification of
the inclusion of in is performed by theintersectoperation
[2], whose complexity is linear with the number of nodes of
the smaller BDD involved (in this case the BDD representation
of ). Since the number of nodes of such a BDD is always at
most , the above verification is performed in a very
efficient way. BDD’s are used in this step of the test gener-
ation procedure to efficiently check the inclusion of a newly
generated next state into the set of already explored states.

C. Experimental Results

The above methodology for test generation has been im-
plemented in the programHFunTest, written in C on a
Sun SparcStation10, based on the BDD library of CMU [1].
Experiments have been performed to validate the methodology
on a set of Hopfield networks with different numbers of
neurons. Each network (weight matrix and threshold vector)
has been converted into a VHDL description input to an
industrial synthesis tool to produce the gate-level description
of the network (net-list). At the same time,HFunTestconverts
the network characterization into a BDD description and
generates the test sequence. Finally, both net-list and test
sequence are simulated by a sequential fault simulator to verify
the stuck-at fault coverage.

In Table I circuits are characterized in terms of the number
of neurons, gates, memory-elements and stuck-at faults. The

TABLE I
EXPERIMENTAL RESULTS

following two columns of the same table report the length
of the produced test sequence and the achieved stuck-at fault
coverage. Since fault coverage includes detectable and unde-
tectable faults, it is not an effective measure of the goodness of
the proposed test methodology. Thus, the two smallest circuits
have been analyzed with a redundancies removal program
(Veritas [4]) to produce irredundant network implementations.
On such circuits, the achieved fault coverage may be seen
as fault efficiency (last column) and it better highlights the
effectiveness of the proposed testing methodology.

Due to their huge size, the largest proposed circuits cannot
be analyzed by a gate-level test pattern generator even if it is
based on implicit FSM traversal techniques while they can be
tackled by the proposed testing methodology.
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