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rtificial intelligence technologies are now attractive tools to enhance and improve the efficiency, the capability, and the features

of instrumentation in application areas related to measurement, system identification, and control. These techniques exploit the
omputational capabilities of modern computing systems (in particular, of microprocessor and DSP-based systems) to manipu-
late the sampled input signals and extract the desired measurements. # The aim of the paperis to introduce the basic concepts of artificial
intelligence techniques and present a survey of those applications related to instrumentation and measurement for which such paradigms
have proven to be effective. In particular, we focus on artificial neural networks, fuzzy logic, and expert systems. The common idea shared
by artificial intefligence technologies is to process and analyze available data and 2 priori information intelligently in order to attain low,

medium, and high abstraction levels in the measurement process, enhance the quality and the consistency of measurements, and create

new and advanced instruments. The introduction of new techniques in measurement science has usually been di-
rected toward enhancing the quality of measurement procedures and instrument features, in order to create advanced solutions for known
applications and to provide suitable tools for new ones. Research and industrial activities in the instrumentation and measurement fields
have traditionally been concerned with the design of, and experimentation with, new sensors, new materials, new technologies, and new

methods to analyze data, process signals and images, and identify and control systems.
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Recent research and industrial applications have been final-
ized to study and exploit the use of intelligent and complex ma-
nipulations of input signals within the instruments themselves.
The main goal is to improve and expand the capabilities of tradi-
tional measurement systems and introduce new instruments for
high-level measurements (and, consequently, for new applica-
tions). Artificial intelligence techniques, such as artificial neural
networks, fuzzy logic, and expert systems, are relevant examples
of the evolution of data processing in this direction.

In traditional instruments, including those based on complex
techniques for digital signal processing, operations performed
on input signals usually follow strictly deterministic algorithms.
Conversely, artificial-intelligence techniques abandon such ap-
proaches, thus allowing one to deal with high-abstraction-level
measurement procedures, such as complex nonalgorithmic
processing, self-validation of measurement results, and auto-
matic selection of the most suitable measurement procedure for
the given environmental conditions.

Information-processing technologies execute an algorithm to
identify the desired solution for the specific application case. Un-
fortunately, in some cases, the complexity of traditional algo-
rithms is too high, or it is too difficult to develop an algorithm
itself, or the algorithm is unknown or cannot be completely
specified. This is the case with several applications related to ap-
proximated reasoning and associative problems, as many times
happens in system identification, control, prediction, robotics,
signal processing, filtering, image processing, vision, and pat-
tern classification. In several cases, adaptive technologies (e.g.,
neural networks and fuzzy logic) have been shown to be capable
of finding reasonable solutions for such problems by applying
strategies resembling those typical of human reasoning, such as
similarity, analogy, generalization (e.g., data interpolation and
extrapolation), and multiple-goal optimization.

To this end, artificial neural networks realize an intelligent
data treatment, which is often able to capture the behavior of a
system without necessarily requiring a priori knowledge. The de-
sired solution of a problem is learned through examples instead
of being defined by means of algorithmic statements. Fuzzy logic
is a nondeterministic data treatment which deduces the system
behavior by estimating the probability density function associ-
ated with each possible variable value and by applying suitable
combination rules. In contrast to neural networks, some knowl-
edge about the physical system is needed to identify the relevant
variables and generate the combination rules.

The technical literature contains a large number of commer-
cial products and application areas solved by neural and fuzzy
technologies. It should be noted that even if some guidelines
have been proposed to optimize these paradigms to specific ap-
plications, well-assessed general methodologies are not yet
available due to the complexity of the paradigms, the number of
possible variants, and parameters that must be configured.

Intelligent techniques for data processing have also been
studied as auxiliary tools to optimize and analyze the behavior of
instruments and systems by exploiting the knowledge and the
sensitivity of human experts. This knowledge can be concen-
trated and realized in the expert systems. Input observation and
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deduction of the consequences on system behavior are per-
formed according to empirical and statistical rules extracted
from such knowledge. The idea is to capture the behavior and
the skills of experts so that they can be autonomously repro-
duced and used to infer actions in new cases. Typical and well-
assessed applications are mainly related to analysis of faults and
errors, diagnosis of instruments and systems, and configuration
and tuning of instrumentation.

This paper presents a simple introduction to the most rele-
vant and widely adopted artificial intelligence technologies with
a specific reference to their use in the instrumentation and meas-
urement fields. This provides reference points to the designer in
order to properly take into account artificial intelligence tech-
nologies when designing and evaluating instruments and sys-
tems. More detailed and comprehensive presentations can be
found in the general references at the end of the paper as well as
in the reference listed on the web site cited in [8]. Due to the vari-
ety of aspects and alternatives, our attention is focused only on
the approaches that have been shown to be attractive and effec-
tive in instrumentation and measurement or strictly related ar-
eas. Characteristics of neural and fuzzy adaptive computing
paradigms are given in Section II, together with configuration
procedures and an overview of the most relevant applications.
Section III discusses the use of expert systems for diagnosis of in-
struments and systems, which is one of the most effective and re-
liable results of this technology. This provides reference points to
the designer in order to properly take into account the most suit-
able artificial intelligence technologies in designing and evaluat-
ing instruments and systems.

Adaptive Technologies

Adaptive computational paradigms are techniques suitable to
describe nonalgorithmic input manipulations such as those
which reproduce the nondeterminism, the fuzziness, the
adaptability, the generalization ability, and the parallelism
typical of human reasoning. The most relevant techniques
among these are artificial neural networks and fuzzy logic.

Artificial Neural Networks

Neural network paradigms were initially proposed as mas-
sively parallel computational models capable of capturing and
reproducing the behavior and the activities of the human brain.
The brain has, in fact, extraordinary properties and abilities in
solving very complex tasks by partitioning and efficiently
searching the knowledge space of the solution. This activity can
be carried out in parallel as in a distributed information-
processing system. On the other hand, the brain is able to infer
the solution of a given problem by generalizing the inter-
relationships among known or partially specified information.
Such deductive abilities are based on a “learn from examples”
philosophy, carried out by means of analytical inspection, un-
derstanding, interpolation, and feature extraction. All of these
capabilities find their effectiveness in a wide range of applica-
tions involving, for example, pattern matching, recognition, im-
age and signal processing, and speech understanding. In
addition, they are needed for the identification of the behavior of
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dynamic nonlinear systems and related applications such as con-
trol, robotics, vision, and forecasting.

An artificial neural network is a computational paradigm
whose operation and structure are defined by a directed graph
(see Fig. 1). The nodes are the processing units (neurons), and the
arcs (synapses) represent interactions among neurons. For each
neuron, an interconnection weight (synaptic weight) is associated
with each incoming arc in order to model the influence of the
other neurons’ outputs onto the computation of the envisaged
neuron. More formally, a generic i-th neuron receives, from a
neuron j or from the external world (network inputs), the input X,
and computes an excitation function e=e, (W,, X) where W, is the
synaptic weight associated with the i _ j arc. Usually, the excita-
tion of the neuron is given by the weighted summation of its in-
puts: if the neuron receives n inputs, then e, = ZZ:]W:/X/ -0,
where 0, is a threshold term. A more complex excitation function
can be used to model other behaviors. Inhibitory input signals
are introduced to prevent neuron activation under given condi-
tions established by other neurons, while pulsed inputs are cu-
mulated to simulate the asynchronous operation of a natural
neuron instead of evaluating synchronously the excitation on the
current set of input values. Then, a nonlinear transfer function f;
(activation function) is applied to the excitation signal to produce
the neuron’s output. Several activation functions have been re-
ported and tested in the literature, examples are available both
for continuous functions (e.g., linear, linear with saturation, and
sigmoid) and discretized functions (e.g., sign, step, and multis-
tep). The neuron outputs delivered to the external world are the
network outputs. Both the excitation and the activation functions
may differ within a neural network.

The interconnection topology among neurons defines the
order of propagation of the neuron outputs, i.e., the propaga-
tion order of the distributed parallel computation, so as to re-
produce the learned behavior. In the literature, many
approaches have been tested for different classes of applica-
tions. Two main families of structures have been proposed,
static and dynamic networks.

Static networks are suitable for solving problems which can be
logically modelled as static mappings (e.g., pattern classification,
filtering, nonlinear regression). Under weak hypotheses, any
reasonable function can be approximated by using multilayered
feed-forward topologies (see Fig. 2a), in which the network is
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partitioned into disjoint subsets (or layers) characterized by adja-
cent connections without creating closed loops.

Extensions of this model incorporate lateral interconnections
between neurons within a layer (e.g., to represent inhibitory con-
nections); a special case-is the self-organizing map (see Fig. 2b),
which groups inputs according to an optimizing function. Other
extensions incorporate backward links, which happen in the
Hopfield’s networks (see Pig. 2¢); the final result is obtained
when a steady state is reached.

Dynamic networks are able to capture the dynamical behavior
of a system by introducing memory elements (iin terms of time-
lag elements). Such modifications allow network topologies to
describe dynaric systems (e.g., for identification of dynamic
systems, control, motion, and high-level vision applications).

Interesting results have been achieved by considering neural
networks based on external feedback loops (see Fig. 2d). The net-
work’s inputs are current and past primary inputs and past pre-
dicted (or actual) outputs. The number of past inputs and out-
puts that need to be taken into account is related to the internal
dynamics of the system and can often be deduced—at least in a
first approximation—by studying a rough physical model of the
real system and the related differential equations. This neural to-
pology has been shown to be effective in several practical cases of
prediction and identification.

Feedback loops can be introduced locally within each neuron
(see Fig. 2e). These networks are quite difficult to be configured
since they have many degrees of freedom and local states. This
may lead to a long training procedure, and it requires many ex-
amples to suitably configure the network weights.

Alternative topologies may be considered by introducing
memory elements at the layer level. From preliminary experi-
ments, it seems that these more complex structures have limited
influence on the practice.

A general network structure can be derived from the state-
output system model, which is well known in systems theory
(see Fig. 2f). In this case, the state variables are explicit, and the
system model is partitioned into two blocks generating the
states and the outputs, respectively, The first block uses pastin-
puts and states to compute the current state with a dynamic
neural network; the second block approximates output from
the current state and inputs by adopting a multilayered feed-
forward topology.

When a family of models (i.e., a network topology) has been
selected, the specific neural model must be defined: the number
of layers, the numbers of neurons per layer, and the intercon-
nection weights. Sample general guidelines are available for
choosing the number of layers and the number of neurons
within each layer.

The next step is to configure the network weights by applying
a learning procedure: The weights configuration is obtained by
optimizing a discrepancy function (e.g., a mean-squared error
function) defined over the available examples. Two main classes
of learning may be identified: supervised and unsupervised. In the
first case, the actual outputs of the network are compared with
the expected ones produced by the supervisor (i.e., the available
example), and their discrepancy constitutes the loss function to
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Figure 2 The neural network topologies: multilayered feed-forward (a), self-organizing maps (b), Hopfield's network (c), external feedback loops (d), focal feedback loops (8),

State-output network (f).

be optimized. In unsupervised learning, no supervisor is given,
and weights are adjusted according to the optimization of a func-
tion depending on current inputs and weights; this is typical of
self-organizing maps. During learning the error decreases as
long as the network has unexploited degrees of freedom. On the
other hand, learning in the long run has a main side effect if the
network is overdimensioned (in terms of the number of degrees
of freedom) with respect to the application. The learning proce-
dure may extract from examples the possible noise which affects
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the measurement, and the obtained network features poor
generalization ability (i.e., performs badly on new examples).
Therefore, the learning procedure needs to be terminated as soon
as a reasonable learning error has been achieved, before the net-
work loses its generalization capability.

Fuzzy Logic

Fuzzy logic has been created as an approach for defining the
computation in a nondeterministic way by introducing the
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concept of incompletely determined membership of an object to
a set. (This is in contrast to traditional “crisp” logic in which an
object either belongs or does not belong to a set in a definite way).
The final goal is the effective simulation of human reasoning,
which is capable of making good or reasonable decisions even in
the presence of uncertainty and lack of precision. When the
problem complexity increases, exact formulations of the system
model and the desired solution become difficult and impractical,
or even impossible, due to the necessity of understanding and
abstracting the relevant aspects related to identification of a
solution. In this case, a qualitative (and not quantitative)
description of the system becomes more effective in capturing
and representing the system characteristics, which are difficult
to deal with in a deterministic “crisp” logic. However, the use of
a fuzzy approach requires knowledge of some physical features
of the system. The success of fuzzy logic arises from the ability to
“measure” and treat the intrinsic vagueness of a physical system
by using a flexible representation.

The key idea which led to the fuzzy logic theory was to extend
and generalize the basic concepts of “crisp” set theory by intro-
ducing uncertainty and, in particular, the definition of member-
ship grade to a set. An object does not simply belong or not
belong to a set: it belongs with a given confidence (membership
grade), that is, it can be classified as belonging to the set with a
given confidence. There are no definite boundaries between sets;
one shades gradually into another. An object is not fuzzy (i.e.,
incompletely determined) by itself: what is fuzzy is the subjec-
tive evaluation related to the membership of the object with re-
spect to the envisioned set. Fuzzy sets and fuzzy logic are
therefore generalizations of traditional “crisp” set theory and
logic, respectively. Fuzzy representation and, specifically, fuzzy
measurements, are radically different from probabilistic represen-
tation and measurements, respectively. In the second case, the
characteristics of an object are not certain: their measurements are
uncertain and imprecise. In fuzzy logic, the measurements of the
object characteristics, though accurate and precise (at least within
the precision of the instruments used for their measurement), can-
not give any certain information about the system status since
their interpretation in terms of membership to given sets is shaded
and incompletely determined. As a consequence, overall system
behavior cannot be derived by a deterministic processing of the
available measured quantities but needs to be represented in
terms of fuzzy membership to given sets.

Formally, a fuzzy set A, defined on a domain U, is described
by means of a membership function which maps the domain U
into the membership grade (which ranges in the interval [0,1]);

medium high
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Figure 3 Fuzzy sets. low, medium and high.
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the extreme values either indicate nonmembership or complete
membership, as in the traditional “crisp” set theory. An example
is shown in Fig. 3. In the case of data sequences, the membership
function can be defined either on the individual datum or on a
subsequence having a given length around the datum. The fuzzy
rules allow expressing the processing strategy compactly in the
form of approximate reasoning. A fuzzy rule usually involves a
group of antecedent clauses, which define conditions and subse-
quent clauses defining the corresponding action. A fuzzy system
is a nonlinear mapping of input fuzzy variables to an output
fuzzy variable, defined by a set of fuzzy rules. To solve a problem
by means of fuzzy reasoning, all the knowledge about the prob-
lem must be incorporated and expressed as a set of fuzzy rules
and membership functions. As a consequence, the envisioned
application needs to be known in advance and in detail in order
to describe ancl model the system in a fuzzy form, by introducing
some uncertainty in the formal description. In some cases, the
fuzzy rules can be learned and extracted from the data during a
training phase.

The inference mechanism is the process that numerically
evaluates the information embedded in the fuzzy set of rules
(rule base) in order to generate the final result. More than one
rule may become active at each step of the fuzzy computation,
according to the fuzzy validity of the premises. Several ap-
proaches have been proposed in the literature for the inference
mechanism, but they can be reduced to three basic strategies. The
min-max approach evaluates the membership grade of the out-
put variable in each active rule as the minimum value among the
grades of the input fuzzy variables; then the final grade of the
output variable is obtained by or-ing the fuzzy distributions of
all active rules. In the product-sum method, the membership
grade of the output variable for each active rule is scaled down
by the minimum value of the grades of the input variables; these
grades are then summed up. In the min-sum approach, the first
step of each rule is performed as in the min-max method, while
the intermediate results are then added as in the product-sum
strategy to point out the nonlinearities. A scalar value needs to be
generated as a final result of the fuzzy computation: “defuzzyfi-
cation” methods are available to extract a scalar value from the fi-
nal membership grade distribution generated by the inference
mechanism. For example, the scalar value corresponding to the
center of gravity of the membership grade distribution is as-
sumed as the expected result of the fuzzy computation.

Applications: Sensors, Measurement, and
Modeling

The use of adaptive technologies in the area of instrumenta-
tion and measurement has several applications with regard to
data analysis and manipulation at different abstraction levels,
from sensor implementation to sensor enhancement, from sen-
sor fusion to high-level sensors, from system identification to
prediction, from calibration to system control, and from complex
measurement procedures to intelligent instrumentation. This
wide spectrum of feasible and efficient application is due to the
capabilities of capturing the behavior of complex nonlinear dy-
namic systems by means of a limited number of parameters that
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can be configured adaptively and progressively. In addition, the
relative compactness of these techniques in many practical cases,
that is, their limited computational complexity with respect to
other traditional approaches, is often suitable to support real-
time applications and allow realization of analog/digital inte-
grated circuits.

Neural networks and fuzzy logic can be exploited to imple-
ment new sensors at a physical level. Detection of physical quan-
tities has been shown to be feasible in the literature. For example,
artificial retinas and cochleas have been realized by using inte-
grated circuits, as well as infrared and high-energy detectors
based on CCD technologies. Nonintrusive and noninteracting
instruments can also be realized by observing physical quantities
strictly related to the desired one. For example, magnetic reso-
nance, echography, or reflected light can be used to measure the
state of an object (e.g:, the roughness of a surface or the position
in space).

The characteristics of traditional nonlinear sensors can be en-
hanced by transforming and smoothing the output generated in
regponse to physical input stimulus. In particular, these tech-
nologies are effective in modifying the strong nonlinearities of
some sensors so that the output becomes linear (or quasi-linear)
to simplify subsequent use. Transformation and, in particular,
linearization could obviously be implemented either by means
of a look-up table or a specific algorithm. However, in many
cases, an accurate table may be too large to be realized, while the
algorithm may be time consuming or may need a dedicated com-
puting system.

Noise reduction in the sensor measurements and, in general,
signal or image filtering are other features which allow move-
ment of the measurement and application problems related to
the noisy data into the sensor itself, without imposing any spe-
cific requirement on subsequent operations using the sensor
data. Filtering allows an outline of some specific features of the
signal or image under observation; in several cases, the adaptive
techniques are attractive with respect to traditional DSP-based
algorithms since they can be expressed and implemented more
easily, even by learning on the actual data.

A particular form of this ability deals with missed data: aloss
of input data occurs in real systems when sensors are occasion-
ally or temporarily unable to generate desired measurements
from observed physical quantities (e.g., for transient or intermit-
tent faults). In such a case, adaptive techniques are able to inter-
polate available data to predict the expected measurement.
Alternately, when physically related data are available from
other sensors, the techniques can deduce the most probable
measurement of the missed sensor from the correlated analysis
of data coming from the other sensors.

At a higher level, adaptive technologies can be exploited to
extract information from the inputs coming from sensors and to
create an instrument capable of performing a high-level meas-
urement (possibly an indirect measurement). As for any tradi-
tional physical quantity we can, in fact, define a feature in the
system under observation and a measurement procedure to
evaluate quantitatively such a feature. The simplest example of
these high-level approaches consists of measuring a quantity de-
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fined as a complex function of physical quantities observed by
sensors; the desired quantity is measured by suitably merging
the information extracted from the sensors (sensor fusion). Other
more abstract examples are the membership of the inputs (e.g.,
sensor data, signal, and images) to predefined classes and the
identification of features (e.g., pulses, spikes, specific wave-
forms, regularities, segments, and textures) in signals and im-
ages (e.g., for classification, pattern recognition, speech
recognition, and quality measurements).

A high-level measurement is also the diagnosis of complex
systems, which involves analysis and measurement of the oper-
ating status from observation of characteristic parameters. This
application area may involve both the detection of the fault pres-
ence as well as the identification of the fault and/or the faulty
component. Examples are available in the literature for sensors,
motors, complex systems, and plants.

System identification has a relevant role in measurement and
instrumentation since it allows capturing the system behavior
(i.e., its characteristic parameters) from the analysis of measure-
ments, even in the presence of noise. This is important whenever
a product needs to be assigned and certified as belonging to a
specific class, according to a given standard taxonomy. Neural
modeling and fuzzy modeling have been shown to be effective
and efficient in capturing the behavior of a wide range of sys-
tems, encompassing linear and nonlinear systems as well as
static and dynamic ones. In particular, it was proved that they
are universal approximators of any static system.

A direct application of dynamic system modeling is predic-
tion of expected output after a given time interval. This is often
useful in predicting the system behavior well enough in advance
to make correct decisions about the system operation and con-
trol. Examples are in the control of complex systems and indus-
trial plants, in robotics, and in the stock exchange. A particular
case of prediction is “what if” simulation: Quite accurate simula-
tions are performed in a very limited time to predict ma-
chine/plant reactions to different possible actions without
actually applying them, so that the supervisor is able to select the
most suitable one.

Calibration of sensors and systems through adaptive tech-
niques is another interesting area. The optimal (or near optimal)
set points of the characteristic parameters are identified and
maintained so that the system behavior is adapted to the specific
realization, the components actually used, and the surrounding
environment.

Automatic control of complex (possibly nonlinear and dy-
namic) systems is a further field in which measurements and in-
struments are deeply involved to identify and maintain the
working point within the desired accuracy. On the other hand,
complex measurement systems often need embedded control
systems in order to guarantee the target performance. Several ex-
amples are available in the literature covering these aspects. This
is the widest application area which is now known to be effective
for fuzzy logic techniques, even if neural approaches have been
shown to be attractive, in particular, when the nonlinearities are
very strong, the dynamics are complex, and the system behavior
is not completely known.
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Expert Systems

This technology tries to capture the knowledge and the
reasoning abilities of people having an outstanding expertise in a
specific field. The final goal is to reproduce, with a computer
program, their intelligent reasoning, understanding, and skills in
solving complex problems, that is, to apply the same rules these
people explicitly or unconsciously use.

An expert system therefore has two main components: the
knowledge base and the inference engine. The knowledge base is
the collection of all information that constitutes the knowledge
or expertise about the problem. Public knowledge includes pub-
lished definitions, facts, and theories. Expertise usually involves
more than public knowledge: human experts generally have a
private knowledge that has never been published and that con-
sists mainly of approximate rules deduced from practical experi-
ence (heuristics). Heuristics enable the human expert to make
educated guesses when necessary, to recognize promising ap-
proaches to problems, and to deal effectively with wrong or in-
complete data.

Abstractly, knowledge consists of descriptions, relationships,
and procedures in the domain of interest. The descriptions are
sentences that identify and differentiate concepts, objects, and
classes. Relationships describe the interactions, dependencies,
and associations between items in the knowledge base. Typi-
cally, they describe taxonomic, definitional, and empirical asso-
ciations. Procedures specify operations to perform when
attempting to reason or to solve a problem. Elucidating, captur-
ing and reproducing all this knowledge allow creation of the
knowledge base.

The inference engine is the tool that applies the reasoning
rules and the specific procedures of the experts to the expert
knowledge base to find the desired solution. This component has
to identify and apply some strategies to look for and derive the
solution from the available knowledge, as efficiently and effec-
tively as possible, without exploring blindly the whole space of
possible solutions (which is usually too wide). To achieve this
goal, both general problem-solving abilities and domain-specific
methods are available as searching strategies. A rational and ro-
bust ability to organize the sequence of decisions and rule appli-
cation is essential for efficiency and effectiveness.

A more detailed structure of an ideal expert system is shown
in Fig. 4; actual systems may contain only some of these compo-
nents. The language processor supports problem-oriented com-
munications between the user and the expert system, usually in
some textual restricted variant of the natural language or evenin
structured or graphic ways. It parses and interprets user ques-
tions, commands, and volunteered information, and it formats
information generated by the system, including answers to ques-
tions, explanations, justifications for its behavior, and requests
for data as well.

The blackboard is a storage area that is used to record the in-
tormediate results of the search operationg, namely, intermediate
hypotheses and decisions that the expert system manipulates
(plan, agenda, and solution elements). The plan describes the
overall or general attack the system will pursue against the cur-
rent problem, including current plans, goals, problem states, and
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Figure 4 The ideal structure of an expert system.

contexts. The agenda records the potential actions waiting for
execution, which generally correspond to knowledge base rules
that seem relevant to some decision placed on the blackboard
previously. The solution elements represent the candidate hy-
potheses and decisions the system has generated so far, along
with the dependencies that relate decisions to one another.

A scheduler controls the order of rule processing, maintains
the agenda, evaluates the priorities of the pending actions, and
estimates the effects of applying the potential rule. The inter-
preter executes the chosen agenda item by applying the corre-
sponding knowledge-base rule; it validates the relevance
conditions of the rule, binds variables in these conditions to par-
ticular solutior blackboard elements, and makes those changes
to the blackboard that the rule prescribes.

A consistency enforcer adjusts previous conclusions when
new data or knowledge alter their bases of support, maintaining
a consistent representation of the emerging solution and avoid-
ing inconsistent solutions.

A justifier rationalizes and explains system behavior to the
user, by explaining why and how some conclusions were
reached or why some alternative was rejected. For this purpose,
the justifier traces backward the solution elements from the con-
clusion in question to the intermediate hypotheses or data that
support it.

The knowledge base comprises information and facts as well
as heuristic planning and problem-solving rules that may be use-
ful in formulating a solution. It is worth noting that expert sys-
tems are able to solve problems efficiently and accurately only as
long as there is enough knowledge in the base and the operating
rules are effective. Therefore, the configuration of the expert sys-
tem needs to be as complete and exhaustive as possible in the
specific domain envisioned, even if the knowledge of experts
may often be difficult to be elucidated, captured, and formalized.

The use of expert systems in instrumentation and measure-
ment may encompass several areas, basically related to all forms
of classification and prediction. However, due to the intrinsic
complexity of the operations performed by the expert system to
identify the solution and due to the large space of solutions to be
explored, real-time applications cannot usually be envisioned.
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Conversely, the larger is the knowledge base, the more accurate
may be the solution identified. Since the quantity of information
that can be stored in the knowledge base is usually much larger
than the information held by realizable neural networks or fuzzy
systems, expert systems may be more effective and accurate than
adaptive techniques, even if definitely slower.

The expert systems used to interpret data in a specific domain
(interpretation systems) may be viewed as high-level sensors:
they explain observed data by associating symbolic meanings
describing the situation or system state. These systems are, for
example, able to perform surveillance, speech understanding,
image analysis, and signal interpretation. Diagnostic systems are
another application of high-level system analysis; they are able
to infer system malfunctions from observed behavior irregulari-
ties and to relate them to the underlying causes. Monitoring ex-
pert systems are able to observe the application system and to
point out features that seem crucial to correct the application sys-
tem behavior.

Prediction and system identification imply an ability to de-
duce consequences from given situations, system inputs, and
states. An expert system usually represents knowledge as dy-
namic nonlinear models whose parameters are tailored to the
specific application case. Control systems can also be realized by
using expert systems, however, only high-level decisions and
overall set points can be taken by such systems, since they are not
able to operate in the real-time environments typical for most
machinery and plants.

Design, configuration, and calibration of instruments are
other areas in which expert systems can be exploited, since they
are able to capture expert knowledge in these critical issues.
These tools can be used to design optimized measurement strate-
gies, according to the available instrumentation and to the envi-
ronmental conditions, as well as to predict the final accuracy and
uncertainty of the achieved measurement results. Similarly, they
can be used to deduce the final uncertainty of a measurement re-
sult generated by complex processing (e.g., with DSP or
computer-based techniques) of the measurement results, which
are likely to be affected by uncertainty.

Conclusions and Methodological Remarks

Artificial intelligence techniques have been reviewed in this
paper for their possible and feasible uses in instrumentation and
measurement. A large number of practical application cases
have been explored, and many outstanding and attractive results
have been summarized.

Adaptive technologies have been shown to be effective in
several application areas. The relative novelty of neural net-
works and fuzzy logic and their intrinsic complexity have not yet
allowed a truly systematic and exhaustive analysis, a compre-
hensive presentation, or the definition of general and standard
methodologies for their application to real cases. We can find
many effective and efficient applications in the literature and on
the market, but each application still requires an in-depth analy-
sis of the paradigm characteristics and an extensive experimen-
tation, mainly based on the experience and the expertise of the
system designer rather than on a well-assessed design methodol-
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ogv. Some design guidelines are available in specific application
areas, with reference to results previously achieved in similar ap-
plications. As a consequence, the successful use of these tech-
niques is often nondeterministic. A great deal of research is in
progress not only to expand the application areas and to explore
new capabilities and new paradigms, but also to identify and as-
sess systematic procedures to afford and solve real application
cases with the same high confidence that the designer has in
more traditional technologies.

Expert systems have been shown to be effective in reproducing
human reasoning in specific areas related to deduction and infer-
ence. In particular, they represent attractive techniques capable of
capturing the knowledge and reasoning of experts in specific
fields. Behavioral analysis and diagnosis of instruments and sys-
tems are therefore well suited for these tools. Diagnosis can also be
viewed as the high-abstraction-level measurement of a system
feature: the correctness of the system behavior. The complexity of
the operations and the computation required to achieve the solu-
tion are not suitable for satisfying the real-time measurement con-
straints (in particular, the difficult ones) that are often present in
control systems or in embedded applications.

Success in the use of the above technologies and, specifically,
of adaptive techniques, does not suggest that they are the best
approach to solve any problem. In particular, the designer has to
be careful in considering these paradigms as panaceas (the com-
plexity of problems has to be acknowledged), or in working with
a problem for which an algorithmic technique is not known. In
practice, in fact, some people believe that neural networks, fuzzy
logic, and expert systems are able to solve any problem better
than any other technique; this is obviously not true. Any ap-
proach has its own positive aspects and limits. At the moment,
the main drawback for such techniques consists of the a priori
unpredictability of the possibility, effectiveness, and accuracy in
solving a given problem. On the other hand, designers should
not try to solve every problem with these paradigms, in particu-
lar when an algorithmic solution is known to perform well and
has a reasonable complexity. In addition, the use of these ap-
proaches should be confined to solving only the specific tasks of
an entire application for which there is no effective algorithmic
solution. This leads to creating heterogeneous systems by mixing
classic algorithmic solutions, neural, fuzzy, and expert-based
components that best exploit the specific capabilities of the indi-
vidual technologies.

All artificial intelligence techniques try to capture some as-
pects of a common knowledge-based approach to the solution of
complex problems. Neural networks afford the distribution of
the information storing and processing, while fuzzy logic intro-
duces nondeterminism in the computation. Expert systems cre-
ate sets of rules to capture the knowledge and the behavior of the
experts. Other artificial intelligence techniques, such as genetic
algorithms, probabilistic reasoning, and chaos theory, have been
introduced in the literature but are not yet assessed enough to be
widely used in our field as autonomous approaches.

Since all of the above techniques try to attac, complex com-
puting problems from different points of view, research hasbeen
performed to merge some of these approaches. Examples are, in
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fact, neuro-fuzzy systems, the inclusion of fuzzy logic and neural
networks in expert systems, and the use of genetic algorithms in
neural networks, fuzzy logic, and expert systems. In the future,
more research should consider integration and fusion of these
techniques as well as other emerging approaches into hybrid
systems, since remarkable advantages and advancements might
be achieved for the design of adaptive systems based on knowl-
edge and learning.

The use of artificial intelligence techniques introduces a new
set of problems related to the characterization of the new instru-
mentation and measurement procedures, incorporating some
components based on these information-processing technolo-
gies. Research is needed to define and evaluate suitable method-
ologies and techniques in order to identify and specify the
accuracy, the precision, and the confidence of the measurements
performed by using these advanced instrumentation and meas-
urement procedures, in particular with respect to the algorithmic
choices embedded in the related software and the computing
system itself. For the near future, these are the challenges of the
research communities in the areas of instrumentation and meas-
urement as well as in computer science and engineering.
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