
472 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 4, APRIL 1998

Brief Contributions
Accuracy vs. Precision in Digital VLSI
Architectures for Signal Processing

Cesare Alippi, Member, IEEE,

and Luciano Briozzo, Member, IEEE

Abstract—The paper provides a sensitivity analysis to measure the
loss in accuracy induced by perturbations affecting acyclic
computational flows composed of linear convolutions and nonlinear
functions. We do not assume a large number of coefficients or input
independence for the convolution module, nor strict requirements on
the nonlinear function. The analysis is tailored to digital VLSI
implementations where perturbations, associated with data
quantization, affect the device inputs, coefficients, internal values, and
outputs. The sensitivity analysis can be used to measure the loss in
accuracy along the computational chain, to characterize the tolerated
perturbations, and to dimension the whole architecture.

Index Terms—Finite precision representation, neural networks, NSR,
sensitivity analysis.

———————— ✦ ————————

1 INTRODUCTION

THE problem of evaluating the effects caused by finite precision on
a computational flow plays a relevant role in the design and con-
figuration of an algorithm specific architecture before its final im-
plementation. In general, a compromise between the hardware
compactness, in terms of silicon area, and the loss in accuracy at
the device output caused by finite representation is required.
Normally, this aspect is tackled by first configuring the architec-
ture and the word precision and, then, testing the loss in accuracy
at the device output with respect to the ideal algorithm. The ar-
chitecture and precision are then repeatedly modified until a suit-
able compromise between hardware cost and accuracy is achieved.
In some other cases where we are interested in representing some
critical events, the signal itself is used to determine the precision
resolution [1].

Here, we propose a sensitivity analysis which correlates, at a
behavioral level, the influence of finite precision on the device's
accuracy. The sensitivity analysis is twofold: It provides a measure
of robustness for the algorithm once affected by noise or structural
modifications (e.g., caused by a gradual aging effect); it computes
the degradation in accuracy consequent to a finite precision im-
plementation; and, then, it uses the results backward to guide the
dimensioning of the whole architecture. The attention of this paper
will be focused on the last issue by specializing general results to a
particular digital VLSI implementation. In such a case, perturba-
tions or noise mainly refer to two cases: external noise affecting
input data and quantization noise.

In this paper, we consider computational blocks composed of
operators such as addition, multiplication, linear convolution, and
nonlinear transformation. These elements constitute building

blocks for most of classic processing techniques (e.g., the ones
dealing with convolutions, FFT, Hartley transforms [2]) and
emerging ones as neural networks [3] and wavelet transforms [4].

The feedforward neural network [3] structure, which consists of
cascades of nonlinear convolvers and which may receive dependent
inputs, is a suitable example of sophisticated computational flows.
When the activation function is linear, a neuron degenerates to a
linear convolver and the network to a cascade of linear convolvers.
We consider feedforward neural networks as a case study; the
results will be, in any case, general and it is reasonably simple to
specialize them to a specific application.

The problem of evaluating the effects caused by finite precision
in networks receiving binary inputs and characterized by hard
limited functions is not new. Pioneering research in this direction
has been conducted in [5] by assuming small perturbations affect-
ing the network’s coefficients (or weights); this constraint has been
relaxed in [6]. Results have been further extended in [7] to deal
with real inputs and continuous activation functions. Other related
interesting analyses can be found in [8], [9], where the attention is
focused on quantization effects.

All the above mentioned authors consider a large fan-in for the
non linear neural convolver and invoke the central limit theorem.
As a consequence, they can assume Gaussian distributions for
errors, convolution values, and outputs. Such a hypothesis is a
panacea since we do not have to worry about dependency on in-
puts and their statistical distribution. In contrast to the above
authors’ approach, we remove the very restricting hypothesis of
considering only very large networks, since many real im-
age/signal processing applications deal with a reduced number of
convolution coefficients. Moreover, the inputs are generally corre-
lated, e.g., consider a convolver which processes inputs coming
from common data. Even when an application requires a large
network, it may be necessary to prune unnecessary weights to
improve performance [10]; this generates sparse topologies and the
Gaussian hypothesis may be not satisfied locally, hence reducing
the effectiveness of the above-mentioned models.

Our framework supports the network ensemble case which is
particularly relevant if the goal is either to develop a general pur-
pose architecture or to permit some on-line weights adjustment.
On the other hand, it can also be used to develop dedicated de-
vices which are primarily designed for specific application for
which the optimal weights are given and computed off-line. For
such an application we assume a tailored analysis to exploit a pri-
ori knowledge and improve the model effectiveness.

In the following analyses, for each computational module, we
will consider two distinct computational flows: the ideal one, in
which the computation is error free, and the real one, implemented
by an error affected device, e.g., a physical device implementing
the computation with finite precision.

As a natural measure for the loss in accuracy caused by a ge-
neric perturbation in a specific point of the computational chain,
we consider the Noise to Signal Ratio NSR defined as the ratio of
the variance of the perturbation—or noise—s n

2 to that of the error-

free computation—or signal—s s
2

NSR n

s

=
s

s

2

2 . (1)

Without loss of generality, we assume unbiased entities, i.e., their
mean is zero, and suggest how to satisfy such a requirement.

The structure of the paper is as follows. Section 2 and Section 3
provide the NSR at the output of a linear convolution block and a
nonlinear function, respectively; altogether, the two results will

0018-9340/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� C. Alippi is with CNR-CESTIA, c/o Dip. Elettronica e Informazione, Politecnico
di Milano, P.za L. da Vinci, 32, 20133 Milano, Italy.
E-mail: alippi@elet.polimi.it.

•� L. Briozzo is with SGS-Thomson Microelectronics, Via Olivetti 2, Agrate Bri-
anza, Milano, Italy. E-mail: Luciano.BRIOZZO@st.com.

Manuscript received 29 Apr. 1997.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 104978.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 4, APRIL 1998 473

also be used to deal with nonlinear convolvers. The effect of addi-
tive perturbations is briefly tackled in Section 4. Section 5 evalu-
ates the effects of the error generation and propagation along
pipelined blocks and considers a feedforward neural network as
a synthesis case study. To make the results meaningful and to
illustrate the application of this methodology, we focus on digital
implementations. In this case, perturbations are caused by data
quantization which affects, incrementally, the cascaded steps in
the computational chain. An analysis of the methodology based on
the use of two case studies is, finally, given in Section 6.

2 THE NSR AT THE OUTPUT OF A LINEAR
CONVOLUTION BLOCK

Let us consider a single linear convolver whose computation in-
volves the evaluation of the scalar product x between the n-
dimensional column vector of the inputs I and the row vector of
the coefficients W

x W I W I WIi i
i

n

= = =
=
Â,b g

1

. (2)

A bias term can be introduced by considering the convolver as fed
by a virtual input which always assumes value one. For the sake of
clarity, we neglect the bias contribution since it does not substan-
tially modify the analysis.

The error affected device operates on the correspondent per-
turbed vectors Ip and Wp and provides the perturbed scalar prod-

uct x W Ip p p= , where W W Wp= + d , I I Ip= + d , and dW and dI

are the perturbation vectors. As an example, in digital implemen-
tations, perturbations may be caused by truncation or rounding of
weights and inputs. Errors dW are local, in the sense that the per-
turbation affects the coefficients of the specific convolver. Conse-
quently, dI generally accounts both for errors affecting locally the
inputs and perturbations generated in previous computations and
propagated up to the considered device. The effective perturbation
is, therefore, of additive type in both types of perturbation. If the
device is the first one in the pipeline, we have a unique perturba-
tion affecting the inputs locally. In the following, we will assume
each component of the perturbation vector dI to be a zero mean
independent and identically distributed random variable. The
error dx between the ideal and the error affected convolution can
be expressed as

d d dx x x W I W I W I W Ip p p p= - = - = +, , , ,b g e j e j b g . (3)

To compute the NSR at the output of the convolution block, we have
to evaluate the variance of the noise Var[dx] and that of the signal
Var[x]. To this end, we consider first the case of a given device for

which W, Wp, and dW are fixed entities, i.e., the convolution coeffi-
cients have been computed off line and the dW perturbation has
been applied. E[dx] and Var[x] can be obtained by taking expecta-
tions with respect to the I and the dI domains and provide [11]

E x W M Var x E W I WI pd d d d d= = +L
NM

O
QP

, , , ,c h e j b gY
2

, (4)

where MI is the column vector containing the input means and

Y = -I MI . From (4), the perturbation dx is biased because of the
a priori nonnull MI . By subtracting MI from each input vector, we

assure, as we assume, E[dx] = 0. This also has the effect of reducing
the word length at the architectural level, thus saving silicon area.
Finally, Var[dx] becomes

Var x WC W W C C WI
T

I I
Td d dd d= + - , (5)

where C Id and CI are the covariance matrices of the perturbation
on inputs and inputs, respectively. See [11] for the proof.

It is reasonable to assume C Id to be diagonal, since the pertur-
bations on inputs are mutually independent; for CI , this works

only if inputs are unrelated. By observing that C CIY = , we can
finally compute the expectation and the variance of the signal

E x E W Var x Var W I WC WI
T= = = =, ; ,Yb g b g0 . (6)

Finally, the NSR for a given linear convolver becomes the ratio
between (5) and (6)

NSR
Var x

Var x

WC W W C C W

WC W
I

T
I I

T

I
T= =

+ -d d dd d . (7)

In digital implementations, it is reasonable to assume that per-
turbations on inputs are independent (e.g., truncation again) with
the same variance s dI

2 . When this holds also for inputs, with each

input having the same variance s I
2 , (7) reduces to

NSR
W W

W W
I

I

I

I

= + -
L

N
M
M

O

Q
P
P

s

s

d d s

s
d d
2

2

2

21
,

,
b g
b g . (8)

It is simple to extend the validity of (5) from the specific case of
a dedicated convolver to a general purpose one, i.e., we move to a
device which implements an ensemble of linear convolvers. In this
case, weights and perturbations on weights must be modeled as
zero mean random variables. Note that we do not require the
weights to be independent but only that weights and perturba-
tions on weights are unbiased and independent from inputs and
perturbations on inputs. This grants E[dx] = 0. By taking expecta-
tions in (5) with respect to dW and W,

Var x tr C C tr C C CW I W I Id d d d= + -c h e j , (9)

where tr is the trace operator and CW and C Wd are the covariance
matrices of weights and perturbation on weights, respectively. In
the reasonable case of independent perturbations, C Id and C Wd

become diagonal matrices and (9) becomes

Var x I W i
i

n

W I i I i
i

n

d s s s s sd d d= + -
= =
Â Â2 2

1

2 2 2

1
, , , . (10)

As far as the signal is concerned, we can easily obtain that

Var x tr C CW I= c h , (11)

from which

NSR
tr C C tr C C C

tr C CE

W I W I I

W I

=
+ -d d dc h e j
c h

. (12)

If we further assume that W and dW are mutually independent,
with the same variance s W

2 and s dW
2 for each component of the

vectors, it is easy to derive from (10) and (11) that, for the network
ensemble case,

NSRE
I

I

W

W

I

I

= + -
L

N
M
M

O

Q
P
P

s

s

s

s

s

s
d d d
2

2

2

2

2

21 . (13)

By neglecting the negative contribution, expression (13) becomes
formally similar to that suggested in [7], but without assuming any
restricting hypotheses.

3 THE NSR AT THE OUTPUT OF A NONLINEAR BLOCK

To make the mathematics more amenable, we consider functions
y f x x y= Œ ¬ Œ ¬(), , 2 . Actually, this is not a strict restriction, since
the hypothesis holds in most of applications. In some cases, a
hard-limited threshold function, such as the Heaviside step func-
tion H(x), is applied to the convolution output [2]. H(x) can be seen
as the limit of a sigmoidal function S(x) when its temperature T

474 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 4, APRIL 1998

tends to infinity. More specifically, for a sufficiently large T,
S Tx e Tx() ()= + - -1 1 is a twice differentiable approximation of H(x).
An extension to a multivalued step function is straightforward.

As with the scalar product, we have to determine the stochastic
features associated with the noise and the signal by computing
means and variances. The error-affected computational flow receives
a perturbed scalar xp and generates a perturbed value yp . From the

definition,

E y E y x y x E y x y x xpd d= - = - -() () () () , (14)

where the expectation is taken with respect to x and dx. Under the
reasonable assumption that x and dx are independent random
variables (or, more correctly, that the term E x xd is negligible), a

good approximation of E yd is

E y E y x y x dxx
x

x
x xd

s sd d= - ¢¢ = - ¢¢z
2 2

2 2() ()W . (15)

See [11] for the proof. Equation (15) is unknown since, in gen-
eral, we don’t know the true probability density function -pdf-
Wx of x. However, based on the available data, we can, neverthe-
less, consider the empirical pdf

~
() ()Wx i

i

N

x N D x x= -
=
Â

1

1
d , (16)

where Dd ()◊ is the Dirac’s delta function. This relies on the fact that,
in many applications, the number of data N used to configure the
convolver’s coefficients is generally large in order to grant a good
parameter estimation [2]. As a direct consequence of the law of
large numbers,

~Wx converges weakly to Wx . Therefore, for a suffi-

ciently large N,
~Wx can be substituted with Wx and (15) becomes

E y N y xx
x i

i

N

d
s d@ - ¢¢

=
Â

2

1
2 (). (17)

We can now consider Var yd . By leaving details to [11], we

obtain that

Var y E y x E y x E y xx x
x

x xd s
s

d
d= ¢ + ¢¢ - ¢¢() () ()2 2
4

2 2

4 3e j . (18)

As with the mean, we estimate the variance by considering
~Wx

Var y N y x N y x N y xx
x i

i

N
x

x i
i

N

x i
i

N

d
s sd d= ¢ + ¢¢ - ¢¢

L
N
MM

O
Q
PP

F

H
GG

I

K
JJ

= = =
Â Â Â

2
2

1

4
2

1 1

2

4
3 1

() () () . (19)

Since we do not assume a large fan-in for the convolver, as in [7],
[8], we cannot compute the mean and the variance for the signal x
in a close form. Nevertheless, since we know

~Wx , we have that

E y N y xy i
i

N

@ =
=
Âm

1

1

() Var y N y xy i y
i

N

= @ -
=
Âs m2 2 2

1

1
() . (20)

The NSR at the output of the nonlinear block finally becomes the
ratio of (19) to (20).

4 THE NSR AS A CONSEQUENCE OF AN ADDITIVE
PERTURBATION

In digital realizations, the output of a computational block is often
truncated or rounded before performing subsequent computa-
tions. In other cases, an additional perturbation may affect the
outputs. To model such actions, we consider a module which in-
puts a x value and outputs a perturbed value xp such that

x x xp= + d , where dx is a random variable with zero mean and s dx
2

variance. Trivially, if s x
2 is the variance of the signal, the NSR di-

rectly comes from its definition (1).

5 THE NSR AT THE OUTPUT OF PIPELINED DIGITAL
BLOCKS

In order to illustrate how previous results can be applied in a real
computational chain, we consider in this section the implementa-
tion of a simple algorithm in digital hardware. The perturbations
affecting the computation are due to quantization of the signals
involved. Quantization, which implies a reduction of the signal
resolution, can be applied to inputs, convolution coefficients, or, at
the end of intermediate computational steps, on partial results.
Another source of quantization error comes from the discretization
of continuous functions, such as those utilized in nonlinear com-
putational steps. Quantization can be obtained by considering
truncation, rounding or jamming techniques (see [7] for a review).
As with [8] and [9], we assume that errors coming from rounding
and truncation are discrete random variables subject to uniform
distributions. Such errors are independent from each other and
from all inputs and outputs. As pointed out in [9], a preliminary
step requires investigation of the minimum and the maximum
values assumed by the weights; afterward, a subsequent rescaling
phase is generally envisaged for resolution efficiency. We definitely
confine ourselves to this case.

The quantization error, obtained by removing from a k bits
number the q less relevant ones, has approximately zero mean and
variance s T

q2 22 3= for truncation and s R
q2 22 12= for rounding.

As an example, we consider the case of a general purpose neu-
ron that is to be implemented in VLSI hardware (possibly within a
network of neurons) and which must be configured to receive n = 7
real weights, each defined within the [-7, 7] interval and able to
process uniformly distributed inputs in the [-3, 3] interval. A two’s
complement fixed point representation is considered; for simplicity,
we assume the integer parts to be represented without errors and
that the decimal part is characterized by bI and bW bits to represent
inputs and weights, respectively. Truncation is considered.

Since we are configuring a general purpose neuron, it is also
reasonable to assume that the weights are uniformly distributed in
their definition interval. Note that we can deal directly with (18).
We assume, as with [9], the hyperbolic tangent activation function
to be uniformly defined in the [-1, 1] interval. Different models can
be obviously considered, e.g., the one suggested again in [9]. By
recalling that, for a hyperbolic tangent function ¢ = -y y()1 2 and

¢¢ = - ¢y y y2 , we can easily compute the expectations needed in (18)

and (20): E y¢ =2 8 15 , E y¢¢ =2 32 105 , E y¢¢ = 0 , E y = 0 ,

E y2 1 3= . With respect to Fig. 1, the NSRE at the neuron output is

NSR f NSR yE E
f

y

() ()= +
s

s
d
2

2 . (21)

The perturbation d f might be seen as a truncation or induced

by a look-up table realization of the nonlinear activation function.
We indicate with bf the number of bits, yet to be defined, neces-

sary to store in the look-up table the output values. Nothing
changes, however, if the perturbation d f , instead of being intro-

duced by a look-up table, is derived from a device implementing

Fig. 1. A neuron, a simple pipelined computational block.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 4, APRIL 1998 475

the nonlinear function, e.g., see [12]. From (18) and (21) we obtain,
that [11]

NSR fE f x x() = + +3
8
5

24
35

2 2 4s s sd d d . (22)

From the biquadratic equation (22), a necessary condition for a
feasible solution is s df ENSR f2 3< () . If we tolerate, at most, an

NSR fE() loss in accuracy at the neuron output, we have, from (22),

s sd dx f ENSR f2 235 24 28 784 840 3< - + - -(())e j.

For simplicity, let us assume that there are no errors at the ac-
cumulator level, i.e., that the errors affecting the scalar product
have been generated only by propagation of errors on W and I. If
this is not the case, then we have to consider an additional additive
perturbation on the accumulator as we did for d f . Under the

above mentioned hypotheses, from (9)

s s s s s sd d d dx W I I I W
b bn n I W2 2 2 2 2 2 2 27

9 49 2 9 2= + - @ +- -e j () . (23)

Finally, the relationship between quantization on weights, inputs,
outputs and loss in accuracy is

y b bI W1
7
9 49 2 9 22 2= +- -()

< - + - - =35 24 28 784 840 3 22(())s df ENSR f ye j . (24)

Each point P b b b NSR fI W y E, , , ()e j satisfying (24) generates a loss

in accuracy at the neuron output that is smaller than NSR fE() . If
we are considering the synthesis phase, i.e., we wish to synthesize
the architecture at the register level, the tolerated loss in accuracy
at the neuron output NSR fE() is given and we have to determine
how many bits we need to represent the inputs, the weights and
the output. Conversely, in the analysis phase, the perturbations are
given, i.e., the number of bits used to represent values are set and
we want to measure the resulting loss in accuracy at the device’s
output.

An example of synthesis is given in Fig. 2 for the case
NSR fE() .= 0 1 (we tolerate a 10 percent loss in accuracy according to
NSR). The numbers of bits used to represent the decimal part of the
inputs and outputs are given on the abscissa axis; the model family y1
(which is parameterized in bW) and y2 are also given. Graphically, the
points satisfying (24) are those for which the condition y1 < y2 is satis-
fied. In Fig. 2, we can immediately identify two interesting solutions:

P b b bf I W1 2 4= = =,e j and P b b bf I W2 3= = =e j . P1 is of particular

interest if the look-up table plays the most relevant role in occupying
silicon area (i.e., we want to minimize the number of bits used to rep-
resent the inputs). Conversely, P2 is to be preferred if the number of
weights is dominant in occupying silicon area (i.e., we wish to mini-
mize the number of bits used to represent the weights).

The extension from a single neuron example to a whole net-
work is directly realizable. Equation (24) has been obtained from
(23) by assuming that the neuron’s inputs are mutually independ-
ent; if this not the case, then we simply have to consider (10) in-
stead of (23) and to adapt it. The unique difference is in y1, since
now the weights and inputs assume different covariance matrices
for each neural layer. For a whole network, it is reasonable to con-
sider a unique variance for all weights; the main difference is
therefore in the inputs and the perturbations on inputs covari-
ances. We can, thus, easily dimension inputs, internal registers,
and outputs by graphically dimensioning a neuron for each layer
as we have shown in this section.

6 EXPERIMENTAL RESULTS

6.1 Case Study 1: The Sensitivity Analysis in a Digital
Architecture for Signal Processing

The experiment deals with function approximation and, in par-
ticular, with the configuration of a feedforward network trained to
approximate a ¬ Æ ¬ function defined in the [-5, 5] interval. The
best neural network possesses five hidden neurons: This is an ex-
ample of a reduced fan-in case.

Furthermore, since hidden neurons process the same input val-
ues, the inputs of the output neuron are strongly dependent. We
assume all weights in the network to be represented with the same
resolution. The goal is to evaluate the NSR as predicted by the
theory at different points of the architecture and to compare it with
the experimental derived counterpart. Errors are due to truncation
of neural values involved in the computation. In this experiment,
finite precision affects the inputs and the weights. No further er-
rors affect the accumulator which is used to store the resulting
convolution value. From the results given in Fig. 3; we can see that
the NSRe estimated by the theory at the output of the output neuron
nicely approximates the experimental one NSRr. As expected, by
increasing the resolution, NSR tends to zero, i.e., the implemented

Fig. 2. The synthesis phase for a neuron: the NSRE(f) = 0.1 case .

Fig. 3.No errors at the accumulator level.

476 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 4, APRIL 1998

algorithm tends to the ideal one. On the other hand, if we consider
less then nine bits to represent the weights or less than five bits for
the inputs, the loss in accuracy drastically increases. In our case,
since a two’s complement representation has been considered, a
minimum of five bits for the inputs means that, in a fixed point
notation, we need a bit to represent the decimal part.

As a second experiment, we considered an architecture in
which the number of bits used to represent the decimal part of
inputs was fixed to one. Perturbations also affect the weights and
the accumulator output, i.e., there is an additive error caused by
truncation at the network’s output. The situation is shown in
Fig. 4. We can see NSRe overestimates the real one NSRr; the ap-
proximation is satisfactory provided that the perturbation affecting
the scalar product is small enough to guarantee the validity of (19).
We should note that NSRe becomes a bad estimate of NSRr only
when the perturbation almost fully corrupts the signal

6.2 Case Study 2: The Sensitivity Analysis in a Digital
Architecture for Image Processing

This application refers to the development of a dedicated digital
VLSI hardware to detect the presence of linear defects in images.
The portion of the architecture with the highest computational
load can be logically subdivided into two cascaded modules: a
feature extractor module followed by a decision module to classify
the presence/absence of linear defects in the object [13]. The first
module is a constrained convolver whose 9 × 5 weights mask has
been trained with defect/no-defect examples. The second block, or
defect identifier, can be implemented with a simple decision algo-
rithm based on the convolution values. However, critical situations
may require finer decisions to be implemented outside the chip.
Here, we will focus our attention on the neuron-convolver proc-
essing module, which receives the input data and provides the
convolution result to the chip’s output.

After experimental analyses, it was decided to reduce the input
resolution from eight to six bits. The scalar product was con-
structed by placing the partial products in a look-up-table. No
errors were introduced at the accumulator level and the outputs,
characterized by an eight-bit resolution, were represented with six
bits. All data reduction was implemented with truncation. The
final architecture, developed at SGS-Thomson, together with the
specified perturbations, can be functionally represented, as shown
in Fig. 5. To validate the architectural choices, we have to compute
the NSR at the output of the convolver. According to the data flow
of Fig. 5, the NSR(f) at the convolution output is simply the ratio of
the variances of the perturbations propagated along the computa-
tional chain to that of the signal, namely the convolution output. If

we indicate with s do
2 and s dp

2 the variances of the perturbations, do

caused by truncating the scalar product output and dp associated
with the resolution of the partial product stored in the LUT

NSR ap
n p

x

I

x

() = +
s

s

s

s
d d
2

2

2

2 ; NSR f NSR ap o

x

() ()= +
s

s
d
2

2 .

Finally, from (5), we obtain

NSR f
WC W n W n

I
T

x

p

x

o

x

I p o

x

() = + + =
+ +d d d d d d

s

s

s

s

s

s s s

s2

2

2

2

2

2 2 2 2

2 .

The signal variance has been evaluated according to (20) and
provided 2380, and the squared magnitude of the weights vector is
0.43. Since all truncations introduce a two bits reduction, the final
noise to signal ratio is 0.078 which provides a good estimate of the
measured one NSR = 0.075. The loss in accuracy introduced by the
considered architectural design is, therefore, of 7.8 percent.

An example of accuracy degradation is given in Fig. 6, where a
portion of a convoluted image is given. Fig. 6a presents the image
which has been convoluted with the error-free device, while
Fig. 6b presents the image generated by the real convolver. We can
see that the real device introduces a visible loss in accuracy; this
loss can be promptly estimated by the suggested methodology.

As a final remark, we must mention that the implemented de-
vice is intended only as a prototype; register dimensioning was, in
fact, empirically determined and tailored to a limited set of im-
ages. On this set, the device behaves sufficiently well. The meth-
odology developed in this paper, however, presents a critical value
of NSR which suggests that a more conservative register dimen-
sioning would allow a more robust implementation of the device.

7 CONCLUSIONS

In this paper, we have presented a sensitivity analysis to deal with
algorithms containing scalar product evaluations and nonlinear
function computation. The stochastic framework investigates the

Fig. 4. One bit to represent the decimal part of inputs.

Fig. 5. The functional description of the architecture.

(a) (b)

Fig. 6. (a) the ideal convolution b: the real convolution, (b) the real
convolution.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 4, APRIL 1998 477

effects caused by perturbations at different levels of the computa-
tional chain by estimating the induced loss in accuracy on the basis
of a noise to signal figure of merit. Results have been tailored to
digital implementations where the main cause of noise is associ-
ated with quantization effects. Extensions to others operators, e.g.,
max and modulus, are currently under study.

REFERENCES
[1]� The Fermi Group, “A Digital Front-End and Readout Microsys-

tem for Calorimetry at LHC: The FERMI Project,” IEEE Trans. Nu-
clear Science, vol. 40, no. 4, pp. 516-530, Aug. 1993.

[2]� W.K. Pratt, Digital Image Processing. Wiley Interscience, 1978.
[3]� J. Hertz, A. Krogh, and R.G. Palmer, Introduction to the Theory of

Neural Computation. Addison-Wesley, 1991.
[4]� S.G. Mallat, “A Theory for Multiresolution Signal Decomposition:

The Wavelet Representation,” IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, vol. 2, no. 7, pp. 674-693, July 1989.

[5]� M. Stevenson, R. Winter, and B. Widrow, “Sensitivity of Feedforward
Neural Networks to Weights Errors,” IEEE Trans. Neural Networks,
vol. 1, no 1, Mar. 1990.

[6]� C. Alippi, V. Piuri, and M. Sami, “Sensitivity to Errors in Artificial
Neural Networks: A Behavioural Approach,” IEEE Trans. Circuits
and Systems-I, vol. 42, no 6, June 1995.

[7]� S. Piché, “The Selection of Weights Accuracies for Madalines,”
IEEE Trans. Neural Networks, vol. 6, no. 2, Mar. 1995.

[8]� J. Holt and J. Hwang, “Finite Precision Error Analysis of Neural
Network Hardware Implementations,” IEEE Trans. Computers,
vol. 42, no. 3, Mar. 1993.

[9]� G. Dundar and K. Rose, “The Efects of Quantization on Multi-
layer Neural Networks,” IEEE Trans. Neural Networks, vol. 6, no. 6,
Nov. 1995.

[10]� B. Hassibi and D.G. Stork, “Second Order Derivative for Network
Pruning: Optimal Brain Surgeon,” Proc. NIPS5, 1993.

[11]� C. Alippi and L.Briozzo, “Accuracy vs. Precision in Digital VLSI
Architectures for Signal Processing,” Internal Report CNR-CESTIA
97-02, 1997.

[12]� C. Alippi and G. Storti-Gajani, “Simple Approximation of Sigmoi-
dal Function: Realistic Design of Digital Neural Networks Capable
of Learning,” Proc. IEEE-ISCAS, Singapore, 11-14 June 1991.

[13]� M. Valle, D. Caviglia, M. Cornero, G. Nateri, and L. Briozzo, “A
VHDL Based Design Methodology the Design Experience of a
High Performance ASIC Chip,” Proc. Euro—VHDL Conf., Greno-
ble, France, 19-23 Sept. 1994.

