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Sensitivity to Errors in Artificial Neural Networks:
A Behavioral Approach

Cesare Alippi, Vincenzo Piuri, and Mariagiovanna Sami

Abstract—The problem of sensitivity to errors in artificial neural net-
works is discussed here considering an abstract model of the network and
the errors that can affect a neuron’s computation. Feed-forward multi-
layered networks are considered; the performance taken into account with
respect to error sensitivity is their classification capacity. The final aim
is evaluation of the probability that a single neuron’s error will affect
both its own classification capacity and that of the whole network. A
geometrical representation of the neural computation is adopted as the
basis for such evaluation. Probability of error propagation is evaluated
with respect to the single neuron’s output as well as to the complete
network’s output. The information derived is used to evaluate, for a
specific digital network architecture, the most critical sections of the
implementation as far as reliability is concerned and thus to point out
candidates for ad-hoc fault-tolerance policies.

I. INTRODUCTION

The increasing interest in neural networks has been accompanied
by a number of studies concerning fault-tolerance aspects both
with respect to the abstract neural paradigms and in relation with
specific implementations [1]-{3]. The first of these two approaches
is particularly important in the initial phases of design in order
to evaluate the intrinsic sensitivity to errors of a chosen neural
paradigm and eventually to guide in the development of the neural
architecture. Such analysis, being performed at a high abstraction
level, implies definition of purely behavioral errors and avoidance of
any implementation or technological issues.

Sensitivity to particular classes of errors for specific neural
paradigms has been studied, e.g., in [4]-[7]. The authors of [51
and [6] restrict their analysis to errors in synaptic weights or in input
signals, considering such errors equivalent as far as their effect on
the receiving neuron is concerned, and evaluating the consequences
on the behavior of both a single neuron and a complete feed-forward
multi-layered network subject to some initial constraints. In particular,
limitations on error magnitude are adopted, allowing linearization of
the functions involved in evaluation of error propagation probability,
and thus, making the underlying mathematics more amenable. All
such papers consider only networks upon which learning has been
perfected; the same assumption is made in the present paper.

The approach presented in [6] (related to Many-Adalines or Mada-
lines) is the starting point for the more general analysis discussed in
this paper. While still considering only multi-layered feed-forward
networks, we take into account multiple-step activation functions
allowing arbitrary approximations of continuous non-linear functions.
We envision possibility of errors in all the abstract operators that
constitute the neural computation, including the activation function.
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(The model is detailed in Section II.) The mathematical frame
allowing to evaluate the error probability both at the single neuron’s
output and at the whole network’s outputs is developed in Section III.
The complete analysis is derived here for single-step functions, and
performances are compared with the ones obtained for a particular
instance in [6].

II. GEOMETRICAL MODELS FOR COMPUTATION AND ERRORS

In [6], a geometrical interpretation of operations of an Adaline
having input vector X = {zo,---,2,_1} and weight matrix W
is given. The set of input vectors in the n-dimensional hyperspace
creates a hypersphere that is separated into hemi-hyperspheres by the
hyperplane W - X = 0. (The extension required in the case of bias
is trivial.)

We generalize the model by considering multiple-step symmetric
activation functions. Each discontinuity point of the function intro-
duces a hyperplane separating the hyperspace in regions each of
which is associated with an output value. More specifically, the locus
of the input and output vectors lies on concentric hyperspheres whose
number depends on the number of steps into which the function
is decomposed.! Continuous functions are considered as the limit
instance for infinitesimal amplitude of the step-wise interpolation,
the input locus being modified into a hypercube.

A comprehensive error model related to the neuron’s computation
and abstracting from any implementation detail includes the following
classes:

1) input errors;

2) weight errors (weights being fixed, these errors correspond to

unexpected weight values);

3) synaptic product errors;

4) summation errors;

5) evaluation function errors.

For error classes 1, 3, 4, and 5, a realistic error assumption is that
an unexpected result will be produced as a consequence of the error
for at least one value of the variables. A single error assumption will
be adopted, meaning that a single operator is error-stricken.

A geometrical interpretation of the errors’ effects on the neuron’s
output can be obtained. Consider first weight errors; the error-affected
weight vector is We = W + AW, being AW the absolute error
vector. To observe the relative influence of errors on the computation,
the weight error ratio §W = |AW|/|W| is considered; no constraint
is introduced on the magnitude of §W, contrary to the assumption of
very small relative errors in [6].

Denote by 6§ the angle between W and We. The classification
hyperplanes in the presence of error are rotated with respect to the
nominal ones by the same angle 6 around a hyperline orthogonal in
the origin to the hyperplane identified by W and We [11].

If no bias is considered, in the case of single-step activation
functions, this rotation points out two lunes centered in the origin and
having angular amplitude 6 on the hyperspheres. If a bias is adopted,
only one lune is identified on the corresponding hemi-hypersphere.

! Consider, for instance, a two-step function where inputs assume the —1,
0, 1 values. The locus of the X vector lies on three concentric hyperspheres
of radius 0, 1, n1/2.
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The output’s errors are due to misclassification of the input vectors
lying in the lunes.

For a k-step activation function, the rotation affects all hyperplanes
separating the regions characterized by different output values. Each
hyperplane is rotated by the angle 6 around the corresponding rotation
axis; it is possible to prove [11] that all rotation axes belong to the
same rotation hyperplane orthogonal to the hyperplane containing
W e and W and passing through the origin. Besides creation of lunes,
hyperspherical rings may be created whenever the rotation axis does
not intersect the hypersphere, but the hyperplanes cut the hypersphere
itself.

When k tends to infinite, the number of the lunes (rings) inside
which misclassification occurs tends to infinite as well. As a conse-
quence, all input vectors are misclassified with the exception of those
lying in the rotation hyperplane p.

Consider now errors affecting the input vector; X is replaced by
Xe = X + AX. The input error ratio is $X = |AX|/|X|. It can
be easily proved that such error induces a rotation of the classifying
hyperplane by an angle 6 equal to the one between X and Xe.

Errors affecting a synaptic product p generate a p. = p + Ap, the
product error ratio being ép = |Ap|/|p|. The characteristics of Ap
(in particular, its dependency on inputs) are strongly dependent on
the technological implementation of the multiplier.’

Errors modifying the expected summation value 0 = ) wir
lead to 0. = 0 + Ao, with 60 = |Ac|/|o|. Hyperplanes are moved
(not rotated) in the hyperspace; collapsing of two or more hyperplanes
is a limit instance of such behavior.

When errors in the activation function are considered, the expected
function value f becomes the error-affected value f. = f + Af, the
function error ratio being 6f = |Af|/|f|. As for product errors, the
characteristics of activation function errors and the consequent impact
on the neural computation strongly depend on the implementation,
i.e., on the actual faults causing the error. For digital implementations,
a fault may well cause the function to evaluate outside its legal
output codes; non-code words propagation through the network can
be predicted only based on the specific implementation.

In the general case, misclassification of the input vectors resulting
from activation function’s errors is not due to rotation of the hy-
perplanes separating the classification regions, but rather to regions’
modifications induced by different mappings of ¢ onto output values.
Instances related to digital implementations can be listed as 1) change
of the position of the hyperplanes, when a discontinuity point is moved;
2) elimination (collapsing) of some hyperplanes; 3) creation of new
hyperplanes; 4) change of the output value associated with a region.

III. PROBABILITY OF ERROR PROPAGATION

We denote by neuron’s error probability and network’s error
probability the probabilities that the error in an entity of the neural
computation appears at the neuron’s output or at the network’s
outputs, respectively.

A. The Neuron’s Error Probability

The probability of a neuron’s output error due to a weight error
P, (AW) is defined as the ratio between the number of input vectors
misclassified by the neuron and the cardinality of the input space. To
evaluate this probability, we refer to the geometric interpretation by
considering only the zones Z), of the hyperspheres mapped by the
bounded input values. Within each Zj, the distribution of the input

2In the case of analog implementation, where weights are represented by
resistors and inputs are given by voltage signals, a multiplication error is, for
all practical purposes, equivalent to an error of the corresponding weight.
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vectors is uniform or can be assumed uniform whenever the input
space dimension is large [8], [9].

P,(AW) is given by the ratio between the area of all lunes
and rings generated by hyperplanes’ rotation and the area of all
hyperspherical zones Zy. If overlapping of lunes and rings occurs,
each hyperspherical surface must be accounted only once. It is

Ss (Lk) LN z,,)

P (AW) = 2
(aw) S sz
h

where h € [1,H] is the index identifying the hypersphere, k €
[1, 1] is the index of each lune or ring Ly x on the Ath hypersphere,
S(-) is the area of the considered hypersurface, and Ux Lx « denotes
the hypersurface obtained by the union of all lunes and rings on Zs.

Since 6 is a random variable, and we are interested in its average,
we replace § with the expectation E(6) (as in [6]). We express g as
a function of §W by applying trigonometric relationships

0= at |AW | - sin ¢ - at W -sin ¢
= e W[+ |AW]|-coso ) E\TF oW -coso
()]

where ¢ is the angle between AW and W. Equation (2) can be used
to obtain P, (6W).

To complete the computation for a specific case and validate our
results by reference to those presented in [6], consider a single-step
activation function. In this case, there are only one hypersphere and
two lunes. Since the lunes are centered in the origin, the ratio between
the area of the lunes and the area of the zones is equal to the ratio
between the rotation angle # and 7. By replacing 6 with its expected
value, we obtain

_EG® _1 [
P(sW)=="= F/O atg(
-p(0)do 3)

where p(¢) is the probability density function of the random variable
o, defined as in [10]

0]

6W - sin¢
14 6W -coso

K,
I{n +1

n—1

C]

- sin

p(o) =

being K, = 2x"/2/T(n/2), and T(-) the Gamma function. Inte-
gration of (3) (mathematical details are given in {11], [12]) leads
to

N 1 m W -1
Pw(6W)—ﬁ[§+2-atg(6W,+l)] 3)
for any value of §W. P, (6W) is plotted in Fig. 1 compared with
the one given in [6]. For very large values of 6W, Py, (6W) — 1 /2
(as could be intuitively expected given a single step function and
uniform input distribution). Conversely, for very small values of §W,
the results in [6] are obtained. Consider now input errors. P;(AX)
can be computed by referring to a generic W. Rotation ¢ induced
by the error may be viewed as a rotation of the coordinate reference
system around the origin for an angle equal to —¢. This implies that
we can interpret the error on X as an error We on W by making
the appropriate substitutions.

Equivalence of these views is granted when We - X = W - Xe.
To identify the equivalent weight error, we look for a solution We,
where X, W, and Xe are known.

By denoting with p the angle between AW and X, and v the angle
between W and AX (for non null values of [W| and |X|), we obtain

. |We—-W| _|Xe—X| cosv
6W = = .
Wi 1X|

_6X'COSV (6)

cos it cos i
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Fig. 1.
function.

The probability P, (6W) for the case of single-step nonlinear

This equation has an infinite number of solutions. We can safely
assume cosv = cos g by which we finally obtain 6W = 6§X. We
derive for the case of a single-step function

1 6X —1
Pz(é)():ﬁ[ngz.ang(éX_'_l)]. )

As in the case of weight errors, for small values of §X, this provides
the same results given in [6].

Treatment of errors affecting a synaptic product can be reduced
to that of weight errors provided a formal correspondence between
the product error and an “equivalent” weight error is defined. To this
end, let p. = W, X be the affected product; the product error ratio
bp. is 6p. = |Ap.|/|p-|- The equivalent weight error ratio §W is
derived as

|ap.| 1
X W

LAY
W]

|p:|

W= XL W

= dp. =6p. - ®)

Consider now a summation error Ao shifting the hyperplanes
by a segment Ac. The misclassified input vectors belong to the
volume of the hyperspheric segment limited on the hypersphere by
the correct and the shifted hyperplanes. P, (Ag) is therefore the ratio
between the volume of such a hyperspheric segment and the volume
of the whole hypersphere. From P, (Adc), it is possible to derive the
expression for probability P,(60) of observing the relative error §o
at the neuron’s output.

In the case of a single-step evaluation function, for any &, the
probability P, (6c,7) of observing the relative error 6o is

_._J0 ifée <1,ie,|Ac| < |7,
P (bo,7) = {% if 60 >1, ie., |Aa| > [o]. ®)
The formulation for P, (éc) is derived by integrating the above over
all values of 7:

+00
P2 (60) = / P, (65, O)p(¢) d¢
0 if 60 < 1,
+oo >
- %/ p(QdC=1L ifso>1 (10)

where ( identifies the generic value @, and p({) is the related
probability density function for the value ¢.

Finally, probabilistic analysis of activation function’s errors is triv-
ial. From definition of neuron’s error probability, we are concerned
with the evaluation of the probability that an error occurred in the

component computing the activation function appears at the neuron’s
output; we are not interested in the probability of detecting a fault by
observing its effect onto the computation at the neuron’s output.

A fault in the component generating the activation function may
be masked in the neuron’s output by the implementation of the
component itself or by the actual values of inputs and weights.
Conversely, an error in the result computed by such a component is
always observed at the neuron’s output since the component output is
the neuron’s output. Therefore, the neuron’s error probability Py (6 f)
of observing an error 6 f is always equal to 1.

B. The Network’s Error Probability

To observe the error’s influence on the computation of the complete
multi-layered neural network, it is necessary to propagate the effects
of the error from the neuron in which it occurs towards the final
outputs. We evaluate then the network’s error probability P*(6E),
i.e., the probability that error E affects the whole computation.

Any single error propagating to the output of a neuron in layer
f(1 < f< L) creates an error on one input of each neuron in layer
f + 1. We can therefore envision evaluating the probability density
function p(80) that a relative error of magnitude 6X on the input
of any neuron in layer f + 1 (characterized by a probability density
function p(6X)) will cause an error 6O at the output of the neuron
itself. This procedure holds for all neurons in layer f 4+ 1; in turn,
neurons in layer f + 2 will receive inputs with error 6X whose
probability density function has by now been evaluated, and so on
until the network’s outputs are reached.

Let p;(6X) be the density function of the probabilistic distribution
of the input error ratio §X in each layer [ (f+1 < I < L).
For each 6 X, this function gives the probability that 6 X occurs at
the neuron’s inputs. The neural computation performed by layer [
transforms the layer’s input vector X into the layer’s output vector
O and the (possible) input error AX; into the output error AQ;. Let
50 be the output error ratio (601 = |AO;|/|O:]). The probability
density pi(6X)) is transformed by the neural computation into the
corresponding probability density function p;(60;). Such function
gives the probability that a non-null 60; appears at the layer’s
outputs.

In the present case, we need to evaluate the probability density
function p(80), not simply the probability of observing an error.
Therefore, given 6X, and the input-output mapping implemented
by the neuron, we must identify the possible values of 6O and
the probability density function associated with such values. To this
end, we rely on the geometric interpretation adopted in the previous
sections.

Let pso,|sx, be the conditional probability that a relative output
error 60; is generated whenever the input relative error 6X: is
present. The probability density function p;(60:) is obtained by
evaluating the expected value of the conditional probability

P80 =Y psoyjsx, - p(6XD). (i

X,

Consider as a working example neurons characterized by a single-
step activation function. For any value X, the value of 60 is either
0 or 2; in fact, the output error AQ of a single-step activation
function—if any—is either +2 or —2, while |O| = 1. The conditional
probability of observing the error related to each particular value of
80X is pso,j5x, = P.(6X1)-6(2), where 6(2) is the Dirac’s function
centered in §0 =2. The total probability density function p(60;) is
determined as p(60:) = §(2)-Zsx P:(6X1)-p(6X1). By iterating the
above procedure, we obtain the probability density functions for each
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TABLE 1
A SAMPLE EVALUATION OF THE ERROR PROBABILITY IN THE PRESENCE OF PRODUCTION-TIME DEFECTS
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Defect Type Defect Number Defect Probability Error Propagation Output Error Probability
Probability
hidden neuron’s memory 0.6670 0.2081 0.2478 0.0516
output neuron’s memory 0.0334 0.0105 0.5033 0.0168
hidden neuron’s multiplier 0.4104 0.1280 0.2480 0.0317
output neuron’s multiplier 0.0205 0.0064 0.5017 0.0032
hidden neuron’s adder 1.9755 0.6163 0.0267 0.0165
output neuron’s adder 0.0987 0.0307 0.1171 0.0036

neuron in the output layer. Integration of each such function over the
whole range of possible values of the output error ratio provides the
probability of observing an error at the output of the corresponding
neuron. To have a first approximation of the network’s sensitivity,
the maximum value of all probabilities can be considered; in turn, it
provides a lower bound for the error probability P*(8E).

IV. CONCLUDING REMARKS

Equations derived in this paper can be used as guidelines during
design of artificial neural networks. To provide an example of such
a procedure, we chose a simple three-layered network composed of
20 inputs, 15 neurons in the hidden layer, and one output neuron,
trained to detect the presence of a ship in a radar image. The
digital architecture adopted for the neurons is derived from that
suggested in [13], where each neural operators is directly mapped
onto a corresponding device, and the activation function is the single-
step one. A preliminary VLSI design has been carried out, adopting
a 0.7 pum CMOS technology; 8 b have been chosen for weight
representation and 13 b for the adders (to avoid truncation problems).
A defect distribution of 15 defects per square centimeter has been
assumed (since we are evaluating the presence of production-time
defect) as a reasonable parameter provided by recent literature.

As a consequence, the information summarized in Table I has
been derived. For different classes of defects, we evaluated the
total number of defects in each class as related to the silicon area
occupied by the digital devices, the relative occurrence probability of
each defect class, the probability that an error (due to the defects)
propagates to the network’s output, and finally, the probability
of observing an error in the network’s output due to the defect
distribution. (This probability is the product of the defect occurrence
probability by the error propagation probability.)

Simple analysis of this table allows us to identify the weight
memory of the hidden layer as the most critical section in the design.
It is interesting to note that also the multiplier section of the hidden
layer—however simple its design—has a fairly relevant influence on
the network’s ouput. As a consequence, fault-tolerance policies (or, at
least, concurrent fault-detection techniques) should be concentrated
in these two subsystems.

REFERENCES

[1] C. Neti, M. H. Schneider, and E. D. Young, “Maximally fault tolerant
neural networks,” IEEE Trans. Neural Networks, vol. 3, no. 1, pp. 14-23,
Jan. 1992.

{2] D.B. 1 Feltham and W. Maly, “Behavioral modeling of physical defects
in VLSI neural networks,” in Proc. Int. Workshop on Defect and Fault
Tolerance in VLSI Systems, Grenoble, Nov. 1990.

{3] F. Distante, M. Sami, R. Stefanelli, and G. Storti-Gajani, “Mapping
neural nets onto a massively parallel architecture: A defect-tolerance
solution,” Proc. IEEE, vol. 79, no. 4, pp. 444-460, Apr. 1991.

[4) V.Piuri, M. Sami, and R. Stefanelli, “Fault tolerance in neural networks:
Theoretical analysis and simulation results,” in Proc. Compeuro 1991,
Bologna, Italy, 1991.

5

6

7

o}

[8

—_

91

(10]

1]

[12]

{13]

L. A. Belfore, II and B. W. Johnson, “The analysis of the faulty behavior
of synchronous neural networks,” IEEE Trans. Comput., vol. 49, no. 12,
pp. 1424-1429, Dec. 1991.

M. Stevenson, R. Winter, and B. Widrow, “Sensitivity of feedforward
neural networks to weight errors,” IEEE Trans. Neural Networks, vol.
1, no. 1, pp. 81-92, Mar. 1990.

C. Alippi, “Asymptotic insensitivity to weights perturbations in back-
propagation classifiers,” in Proc IJCNN93, Nagoya, Japan, Oct. 1993.
M. E. Hoff, Jr., “Learning phenomena in networks of adaptive switching
circuits,” Ph.D. dissertation, Dept. Electrical Eng., Stanford Univ.,
Stanford, CA, June 1962.

F. H. Glanz, “Statistical extrapolation in certain adaptive pattern recogni-
tion systems,” Ph.D. dissertation, Dept. Electrical Eng., Stanford Univ.,
Stanford, CA, May 1965.

R. G. Winter, “Madaline rule: A new method for training networks
of Adalines,” Ph.D. dissertation, Dept. Electrical Eng., Stanford Univ.,
Stanford, CA, Jan. 1989.

C. Alippi, V. Piuri, and M.G. Sami, “The issue of error sensitivity in
neural networks,” in Proc. Int. Conf. on Massively-Parallel Computing
Systems MPCS94, Ischia, Italy, May 1994.

____, “Sensitivity to errors in artificial neural networks: A behavioral
approach,” in Proc. ISCAS’94, London, UK, June 1994.

C. Lehmann and F. Blayo, “A VLSI implementation of a generic systolic
synaptic building block for neural networks,” in Proc. Int. Workshop on
VLSI for Artificial Intell. and Neural Networks, Oxford, UK, 1990.




